
Point Cloud Library
Release 0.0

Aug 22, 2020

Contents

1 Developing PCL code 3

2 Committing changes to the git master 5

3 Improving the PCL documentation 7

4 How to build a minimal example 9

i

ii

Point Cloud Library, Release 0.0

The following presents a set of advanced topics regarding PCL.

PCL uses modern C++ template programming in order to achieve maximum generality and reusability of its com-
ponents. Due to intricate details of the current generation of C++ compilers however, the usage of templated code
introduces additional compile-time delays. We present a series of tricks that, if used appropriately, will save you a lot
of headaches and will speed up the compilation of your project.

• c_cache

CCache is a compiler cache. It speeds up recompilation by caching previous compilations and detecting when
the same compilation is being done again. Supported languages are C, C++, Objective-C and Objective-C++.

• distc

distcc is a program to distribute builds of C, C++, Objective C or Objective C++ code across several machines
on a network. distcc should always generate the same results as a local build, is simple to install and use, and is
usually much faster than a local compile.

• compiler_optimizations

Depending on what compiler optimizations you use, your code might behave differently, both at compile time
and at run time.

• single_compile_unit

In certain cases, it’s better to concatenate source files into single compilation units to speed up compiling.

Contents 1

Point Cloud Library, Release 0.0

2 Contents

CHAPTER 1

Developing PCL code

To make our lives easier, and to be able to read and integrate code from each other without causing ourselves headaches,
we assembled a set of rules for PCL development that everyone should follow:

Rules

• if you make important commits, please _add the commit log_ or something similar _to the changelist page_
(https://github.com/PointCloudLibrary/pcl/blob/master/CHANGES.md);

• if you change anything in an existing algorithm, _make sure that there are unit tests_ for it and _make
sure that they pass before you commit_ the code;

• if you add a new algorithm or method, please _document the code in a similar manner to the existing PCL
code_ (or better!), and _add some minimal unit tests_ before you commit it;

• method definitions go into (include/.h), templated implementations go into (include/impl/.hpp), non-
templated implementations go into (src/.cpp), and unit tests go in (test/.cpp);

• last but not least, please _respect the same naming and indentation guidelines_ as you see in the
pcl_style_guide.

• pcl_style_guide

Please follow the following naming and indentation rules when developing code for PCL.

• exceptions_guide

Short documentation on how to add new, throw and handle exceptions in PCL.

• pcl2

An in-depth discussion about the PCL 2.x API can be found here.

3

https://github.com/PointCloudLibrary/pcl/blob/master/CHANGES.md

Point Cloud Library, Release 0.0

4 Chapter 1. Developing PCL code

CHAPTER 2

Committing changes to the git master

In order to oversee the commit messages more easier and that the changelist looks homogenous please keep the
following format:

“* <fixed|bugfix|changed|new> X in @<classname>@ (#<bug number>)”

5

Point Cloud Library, Release 0.0

6 Chapter 2. Committing changes to the git master

CHAPTER 3

Improving the PCL documentation

• how_to_write_a_tutorial

In case you want to contribute/help PCL by improving the existing documentation and tutorials/examples, please
read our short guide on how to start.

7

Point Cloud Library, Release 0.0

8 Chapter 3. Improving the PCL documentation

CHAPTER 4

How to build a minimal example

• minimal_example

In case you need help to debug your code, please follow this guidelines to write a minimal example.

9

	Developing PCL code
	Committing changes to the git master
	Improving the PCL documentation
	How to build a minimal example

