

    
      
          
            
  


The following presents a set of advanced topics regarding PCL.


Compiling PCL

PCL uses modern C++ template programming in order to achieve maximum generality
and reusability of its components. Due to intricate details of the current
generation of C++ compilers however, the usage of templated code introduces
additional compile-time delays. We present a series of tricks that, if used
appropriately, will save you a lot of headaches and will speed up the
compilation of your project.


	Using CCache to speed up compilation

CCache is a compiler cache. It speeds up recompilation by caching previous
compilations and detecting when the same compilation is being done again.
Supported languages are C, C++, Objective-C and Objective-C++.

[image: _images/ccache.png]


	Using DistCC to speed up compilation

distcc is a program to distribute builds of C, C++, Objective C or
Objective C++ code across several machines on a network. distcc should always
generate the same results as a local build, is simple to install and use, and
is usually much faster than a local compile.

[image: _images/distcc.png]


	Compiler optimizations

Depending on what compiler optimizations you use, your code might behave
differently, both at compile time and at run time.

[image: _images/optimize.png]


	Single compilation units

In certain cases, it’s better to concatenate source files into single
compilation units to speed up compiling.

[image: _images/unitybuild.jpg]






Developing PCL code

To make our lives easier, and to be able to read and integrate code from each
other without causing ourselves headaches, we assembled a set of rules for PCL
development that everyone should follow:


Rules


	if you make important commits, please _add the commit log_ or something similar _to
the changelist page_
(https://github.com/PointCloudLibrary/pcl/blob/master/CHANGES.md);


	if you change anything in an existing algorithm, _make sure that there are
unit tests_ for it and _make sure that they pass before you commit_ the code;


	if you add a new algorithm or method, please _document the code in a similar
manner to the existing PCL code_ (or better!), and _add some minimal unit
tests_ before you commit it;


	method definitions go into (include/.h), templated implementations go into
(include/impl/.hpp), non-templated implementations go into (src/.cpp), and
unit tests go in (test/.cpp);


	last but not least, please _respect the same naming and indentation
guidelines_ as you see in the PCL C++ Programming Style Guide.






	PCL C++ Programming Style Guide

Please follow the following naming and indentation rules when developing code for PCL.



	Exceptions in PCL

Short documentation on how to add new, throw and handle exceptions in PCL.



	PCL 2.x API consideration guide

An in-depth discussion about the PCL 2.x API can be found here.







Committing changes to the git master

In order to oversee the commit messages more easier and that the changelist looks homogenous please keep the following format:

“* <fixed|bugfix|changed|new> X in @<classname>@ (#<bug number>)”



Improving the PCL documentation


	How to write a good tutorial

In case you want to contribute/help PCL by improving the existing
documentation and tutorials/examples, please read our short guide on how to
start.







How to build a minimal example


	How to build a minimal example

In case you need help to debug your code, please follow this guidelines to write a minimal example.








            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Using CCache to speed up compilation

CCache [http://ccache.samba.org/] is nothing more than a cache for your
compiler. ccache is usually very easy to install. Here’s an example for Ubuntu
systems:

sudo apt-get install ccache





ccache will cache previous compilations, detect when the same compilation
is being done again, and reuse its cache instead of recompiling the source code
again. This can speed up your compilation by many orders of magnitude,
especially in those situations where your file timestamps change, and make
is triggering a recompile.

To enable ccache, simply add ‘/usr/lib/ccache’ to the beginning of your PATH.
This directory contains symlinks to ccache, and ccache is smart enough to
look at the name of the calling executable to determine which real executable
to run. I.e. there is a symlink from ‘/usr/lib/ccache/g++’ to just ‘ccache’,
but it actually runs the equivalent of ‘ccache g++’.



Using colorgcc to colorize output

colorgcc [https://github.com/johannes/colorgcc] is a colorizer for the output
of GCC, and allows you to better interpret the compiler warnings/errors.

To enable both colorgcc and ccache, perform the following steps:

Install colorgcc on an Ubuntu system with

sudo apt-get install colorgcc





To enable colorgcc, perform the following steps:

cp /etc/colorgcc/colorgccrc $HOME/.colorgccrc






	edit the $HOME/.colorgccrc file, search for the following lines:




g++: /usr/bin/g++
gcc: /usr/bin/gcc
c++: /usr/bin/g++
cc:  /usr/bin/gcc
g77: /usr/bin/g77
f77: /usr/bin/g77
gcj: /usr/bin/gcj





and replace them with:

g++: ccache /usr/bin/g++
gcc: ccache /usr/bin/gcc
c++: ccache /usr/bin/g++
cc:  ccache /usr/bin/gcc
g77: ccache /usr/bin/g77
f77: ccache /usr/bin/g77
gcj: ccache /usr/bin/gcj






	create a $HOME/bin or $HOME/sbin directory, and create the following softlinks in it




ln -s /usr/bin/colorgcc c++
ln -s /usr/bin/colorgcc cc
ln -s /usr/bin/colorgcc g++
ln -s /usr/bin/colorgcc gcc





make sure that $HOME/bin or $HOME/sbin is the first directory in your $PATH, e.g.:

export PATH=$HOME/bin:$PATH





or:

export PATH=$HOME/sbin:$PATH





depending on where you stored the colorgcc softlinks, so that when
cc/gcc/g++/c++ is invoked the freshly created softlinks get activated first and
not the global /usr/bin/{cc,gcc,g++,c++}.




            

          

      

      

    

  

    
      
          
            
  
Compiler optimizations

Using excessive compiler optimizations can really hurt your compile-time
performance, and there’s a question whether you really need these optimizations
everytime you recompile to prototype something new, or whether you can live
with a less optimal binary for testing things. Obviously once your tests
succeed and you want to deploy your project, you can simply re-enable the
compiler optimizations. Here’s a few tests that we did a while back with
pcl_ros [http://pcl.ros.org/]:

-j1, RelWithDebInfo + O3 : 3m20.376s -j1, RelWithDebInfo : 2m48.064s
-j1, Debug : 2m0.452s
-j2, Debug : 1m8.151s
-j4, Debug : 0m42.846s





In general, we got used to enable all compiler optimizations possible. In PCL
pre-0.4, this is how the CMakeLists.txt file looked like:

add_definitions(-Wall -O3 -DNDEBUG -pipe -ffast-math -funroll-loops -ftree-vectorize -fomit-frame-pointer -pipe -mfpmath=sse -mmmx -msse -mtune=core2 -march=core2 -msse2 -msse3 -mssse3 -msse4)
#add_definitions(-momit-leaf-frame-pointer -fomit-frame-pointer -floop-block -ftree-loop-distribution -ftree-loop-linear -floop-interchange -floop-strip-mine -fgcse-lm -fgcse-sm -fsched-spec-load)
add_definitions (-Wall -O3 -Winvalid-pch -pipe -funroll-loops -fno-strict-aliasing)





Obviously, not all those flags were enabled by default, but we were definitely
playing around with them, and sometimes committing them to the repository,
which led to increase compilation times for some of the projects that needed to
precompile/use PCL.

In general there is no good rule of thumb here, but we decided to disable these
excessive optimizations by default, and rely on CMake’s RelWithDebInfo by
default. You should do the same too when you prototype.




            

          

      

      

    

  

    
      
          
            
  
Using DistCC to speed up compilation

distcc [http://distcc.org/] is a program to distribute builds of C, C++,
Objective C or Objective C++ code across several machines on a network.
distcc should always generate the same results as a local build, is simple to
install and use, and is usually much faster than a local compile.

distcc does not require all machines to share a filesystem, have synchronized
clocks, or to have the same libraries or header files installed. They can even
have different processors or operating systems, if cross-compilers are
installed.

distcc is usually very easy to install – just follow the installation
instructions on its web page. Here’s an example for Ubuntu systems:

sudo apt-get install distcc





In each distributed build environment, there are usually two different roles:



	server

Here, we call the server, the actual workstation/computer that is running
a distcc daemon, and will perform the compilation. To run a distcc
daemon on an Ubuntu system for example, you need to start the daemon,
usually with something along the lines of:

/etc/init.d/distcc start





Once started, you should notice a few distcc processes idle-ing:

$ ps axw | grep distcc
...
30042 ?        SN     0:00 /usr/bin/distccd --pid-file=/var/run/distccd.pid --log-file=/var/log/distccd.log --daemon --allow 127.0.0.1 --allow 10.0.0.0/21 --listen 0.0.0.0 --nice 10 --zeroconf
30043 ?        SN     0:00 /usr/bin/distccd --pid-file=/var/run/distccd.pid --log-file=/var/log/distccd.log --daemon --allow 127.0.0.1 --allow 10.0.0.0/21 --listen 0.0.0.0 --nice 10 --zeroconf
30044 ?        SN     0:00 /usr/bin/distccd --pid-file=/var/run/distccd.pid --log-file=/var/log/distccd.log --daemon --allow 127.0.0.1 --allow 10.0.0.0/21 --listen 0.0.0.0 --nice 10 --zeroconf





Let’s assume for the sake of this example, that we have two machines,
wgsc11 and wgsc12, with distcc installed and running as a server
daemon. These are the machines that we would like use to speed up the
compilation of the PCL source tree.



	client

Here by client we refer to the workstation/computer that contains the source
code to be compiled, in our case, where the PCL source code tree resides.

The first thing that we need to do is tell cmake to use distcc instead
of the default compiler. The easiest way to do this is to invoke cmake
with pre-flags, like:

[pcl] $ mkdir build && cd build
[pcl/build] $ CC="distcc gcc" CXX="distcc g++" cmake ..





Sometimes compiling on systems supporting different SSE extensions will lead
to problems. Setting PCL_ENABLE_SSE to false will solve this, like:

[pcl/build] $ CC="distcc gcc" CXX="distcc g++" cmake -DPCL_ENABLE_SSE:BOOL=FALSE ../pcl





The output of CC="distcc gcc" CXX="distcc g++" cmake .. will generate
something like this. Please note that this is just an example and that the
messages might vary depending on your operating system and the way your
library dependencies were compiled/installed:

-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
-- Check for working C compiler: /usr/bin/distcc
-- Check for working C compiler: /usr/bin/distcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/distcc
-- Check for working CXX compiler: /usr/bin/distcc -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Performing Test HAVE_SSE3_EXTENSIONS
-- Performing Test HAVE_SSE3_EXTENSIONS - Success
-- Performing Test HAVE_SSE2_EXTENSIONS
-- Performing Test HAVE_SSE2_EXTENSIONS - Success
-- Performing Test HAVE_SSE_EXTENSIONS
-- Performing Test HAVE_SSE_EXTENSIONS - Success
-- Found SSE3 extensions, using flags: -msse3 -mfpmath=sse
-- Boost version: 1.42.0
-- Found the following Boost libraries:
--   system
--   filesystem
--   thread
--   date_time
--   iostreams
-- checking for module 'eigen3'
--   found eigen3, version 3.0.0
-- Found Eigen: /usr/include/eigen3
-- Eigen found (include: /usr/include/eigen3)
-- checking for module 'flann'
--   found flann, version 1.6.8
-- Found Flann: /usr/lib64/libflann_cpp_s.a
-- FLANN found (include: /usr/include, lib: optimized;/usr/lib64/libflann_cpp_s.a;debug;/usr/lib64/libflann_cpp.so)
-- checking for module 'cminpack'
--   found cminpack, version 1.0.90
-- Found CMinpack: /usr/lib64/libcminpack.so
-- CMinPack found (include: /usr/include/cminpack-1, libs: optimized;/usr/lib64/libcminpack.so;debug;/usr/lib64/libcminpack.so)
-- Try OpenMP C flag = [-fopenmp]
-- Performing Test OpenMP_FLAG_DETECTED
-- Performing Test OpenMP_FLAG_DETECTED - Success
-- Try OpenMP CXX flag = [-fopenmp]
-- Performing Test OpenMP_FLAG_DETECTED
-- Performing Test OpenMP_FLAG_DETECTED - Success
-- Found OpenMP: -fopenmp
-- Found OpenNI: /usr/lib/libOpenNI.so
-- OpenNI found (include: /usr/include/openni, lib: /usr/lib/libOpenNI.so)
-- ROS_ROOT /opt/ros/diamondback/ros
-- Found ROS; USE_ROS is OFF
-- Found GTest: /usr/lib/libgtest.so
-- Tests will be built
-- Found Qhull: /usr/lib/libqhull.so
-- QHULL found (include: /usr/include/qhull, lib: optimized;/usr/lib/libqhull.so;debug;/usr/lib/libqhull.so)
-- VTK found (include: /usr/include/vtk-5.4;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/lib/openmpi/include;/usr/lib/openmpi/include/openmpi;/usr/include/tcl8.5;/usr/include/python2.6;/usr/include/tcl8.5;/usr/lib/jvm/default-java/include;/usr/lib/jvm/default-java/include;/usr/lib/jvm/default-java/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include;/usr/include/libxml2;/usr/include;/usr/include/freetype2, lib: /usr/lib/vtk-5.4)
-- Found Doxygen: /usr/bin/doxygen
-- Found CPack generators: DEB
-- The following subsystems will be built:
--   common
--   octree
--   io
--   kdtree
--   range_image
--   features
--   sample_consensus
--   keypoints
--   filters
--   registration
--   segmentation
--   surface
--   visualization
--   global_tests
-- The following subsystems will not be built:
-- Configuring done
-- Generating done
-- Build files have been written to: /work/PCL/pcl/trunk/build










The important lines are:

-- Check for working C compiler: /usr/bin/distcc
-- Check for working C compiler: /usr/bin/distcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/distcc
-- Check for working CXX compiler: /usr/bin/distcc -- works





The next step is to tell distcc which hosts it should use. Here we can
decide whether we want to use the local workstation for compilation too, or
just the machines running a distcc daemon (wgsc11 and wgsc12 in our
example). The easiest way to pass this information to distcc is via
environment variables. For example:

export DISTCC_HOSTS='localhost wgsc11 wgsc12'





will tell distcc to use the local machine, as well as both the distcc
servers, while:

export DISTCC_HOSTS='wgsc11 wgsc12'





will only use the wgsc11 and wgsc12 machines.

Finally, the last step is to increase the number of parallel compile units we should use. For example:

[pcl/build] $ make -j32





will start 32 processes and distribute them equally on the two distcc machines.







The following plot shows an example of multiple make -jX invocations, for X
ranging from 1 to 13. As it can be seen, the overall compile time is
drastically reduced by using distcc, in this case with the CPU on the client
machine almost idleing while the wgsc11 and wgsc12 machines do most of the
work. The reason why the plot “saturates” is due to conditional dependencies in
the compilation process, where certain libraries or binaries require others to
be compiled first.

[image: _images/distcc_plot.png]
For more information on how to configure distcc please visit http://distcc.org.




            

          

      

      

    

  

    
      
          
            
  
Exceptions in PCL

There have been a multitude of discussions in the past regarding exceptions in
PCL (see http://www.pcl-developers.org/to-throw-or-not-to-throw-td4828759.html
for an example). Herein, we discuss the major points with respect to writing
and using exceptions.


Adding a new Exception

Any new exception should inherit from the PCLException class in
pcl/exceptions.h

/** \class MyException
  * \brief An exception that is thrown when I want it.
  */

class PCL_EXPORTS MyException : public PCLException
{
  public:
    MyException (const std::string& error_description,
                 const char* file_name = NULL,
                 const char* function_name = NULL,
                 unsigned line_number = 0)
      : pcl::PCLException (error_description, file_name, function_name, line_number) { }
};







Using Exceptions

For ease of use we provide this macro

#define PCL_THROW_EXCEPTION (ExceptionName, message)
{
  std::ostringstream s;
  s << message;
  throw ExceptionName (s.str (), __FILE__, BOOST_CURRENT_FUNCTION, __LINE__);
}





Then in your code, add:

if (my_requirements != the_parameters_used_)
  PCL_THROW_EXCEPTION (MyException, "my requirements are not met " << the_parameters_used);





This will set the file name and the line number thanks to the macro definition.
Take care of the message: it is the most important part of the exception. You
can profit of the std::ostringstream used in the macro, so you can append
variable names to variable values and so on to make it really explicit.  Also
something really important is when the method you are writing can throw an
exception, please add this to the the function documentation:

/** Function that does cool stuff
  * \param nb number of points
  * \throws MyException
  */
void
myFunction (int nb);





This will be parsed by Doxygen and made available in the generated API
documentation so the person that would use your function knows that they have
to deal with an exception called MyException.



Exceptions handling

To properly handle exceptions you need to use the try… catch block.

// Here we call myFunction which can throw MyException
try
{
  myObject.myFunction (some_number);
  // You can put more exceptions throwing instruction within same try block
}
// We catch only MyException to be very specific
catch (pcl::MyException& e)
{
  // Code to deal with the exception maybe changing myObject.the_parameters_used_
}

// Here we catch any exception
#if 0
catch (exception& e)
{
  // Code to deal with the exception maybe changing myObject.the_parameters_used_
}
#endif





Exceptions handling is really context dependent so there is no general
rule that can be applied but here are some of the most used guidelines:



	exit with some error if the exception is critical


	modify the parameters for the function that threw the exception and recall it again


	throw an exception with a meaningful message saying that you encountered an exception


	continue (really bad)











            

          

      

      

    

  

    
      
          
            
  
How to write a good tutorial

No matter how many tutorials we create and upload at
www.pointclouds.org/documentation/tutorials, there are never going to be
enough. :) As our code base and user base are growing, so is the demand for
detailed explanations or step-by-step/how-to documentation increasing. This
short guide will help you understand how you can contribute documentation
and help improve the project.

The Point Cloud Library (PCL) documentation infrastructure has two distinct
parts:

1. API documentation [http://docs.pointclouds.org/] – we are using
Doxygen [http://www.doxygen.org/] to automatically generate the best
possible API documentation, directly from our source files;

2. Tutorials and HowTo documents [http://www.pointclouds.org/documentation]
– we are using Restructured Text [http://docutils.sourceforge.net/rst.html]
via Sphinx [http://sphinx.pocoo.org] to transform simple reST files into
beautiful HTML documents.

Both documentation sources are stored in our Source repository [https://github.com/PointCloudLibrary/pcl] and the web pages are generated
hourly by our server via crontab jobs.

In the next two sections we will address both of the above, and present a small
example for each. We’ll begin with the easiest of the two: adding a new
tutorial.



Creating a new tutorial

As already mentioned, we make use of Sphinx to generate HTML files from reST
(restructured text) documents. If you want to add a new tutorial, we suggest
you read the following resources:



	http://sphinx.pocoo.org/rest.html - official Sphinx documentation


	http://docutils.sourceforge.net/rst.html - official RST documentation


	http://www.siafoo.net/help/reST - has a nice tutorial/set of examples







Once you understand how reST works, look over our current set of tutorials for
examples at https://github.com/PointCloudLibrary/pcl/tree/master/doc/tutorials/content.

To add a new tutorial, simply create a new file, and send it to us together
with the images/videos that you want included in the tutorial. The best way to
do this is to login to https://github.com/PointCloudLibrary/pcl and send it as
a pull request.



Improving the API documentation

Providing a good API documentation is not easy – as finding a balance between
the amount of information that you present for each function, versus keeping it
clean and simple is ermmm, a challenge in itself. Differently said, it’s hard
to know what sort of people will look at the API: hardcore developers or first
time users.

Our solution is to document the API as best as possible, but leave certain more
complex details such as application examples for the tutorials. However, while
this is a nice goal, it’s very improbable that our documentation is perfect.

To help us improve the API documentation, all that you need to do is simply
check out the source code of PCL (we recommend trunk if you’re going to start
editing the sources), like:

git clone https://github.com/PointCloudLibrary/pcl





Then, edit the file containing the function/class that you want to improve the
documentation for, say common/include/pcl/point_cloud.h, and go to the
element that you want to improve. Let’s take points for example:

/** \brief The point data. */
std::vector<PointT, Eigen::aligned_allocator<PointT> > points;





What you have to modify is the Doxygen-style comment starting with /** and
ending with */. See http://www.doxygen.org for more information.

To send us the modification, please send a pull request through Github.



Testing the modified API documentation

If you want to test it locally on your machine, make sure you have Doxygen
installed, and go into the build system (here we assume that you followed the
source installation instructions from
http://www.pointclouds.org/downloads) and run:

make doc





This will create a set of html files containing the API documentation for PCL,
in build/html/




            

          

      

      

    

  

    
      
          
            
  
How to build a minimal example

First of all make a backup of your current state or start a new project for the
minimal example. Than there are basically two ways: strip down your program or
start from scratch.


Method 1: Strip down your program

This method has the advantage that you start with your actual problem and you
can test all the time if you are on the right track. First make sure that the
program actually compiles without the problematic code by commenting it. Then
start removing unneeded code until the bare minimum and make sure that it’s
still showing the error by compiling it with and without the problematic line
(make sure it still emits the same error message).



Method 2: Start from scratch

If your program is to big to strip it down, it’s maybe easier to start from
scratch by building a small project that only includes the problematic code.
Again make sure that it actually compiles without the erroneous code and emits
the same error with it.




How to deal with input data (e.g. point clouds)

If you fear that your problem is connected to the input data (either if you
have a problem with pcl/io or the error depends on the input data) you should
include the input with your minimal example. If the file is to big and a
stripped down version doesn’t work, you should upload it somewhere and only
provide a link to the data. If you can’t include the data or don’t know a way
to provide it, add a remark to your mail and we will contact you to find a
solution.

If the input data is not so important it is best to generate fake data:

1pcl::PointCloud<pcl::PointCloudXYZ> cloud;
2cloud.insert (cloud.end (), PointXYZ (1, 1, 1));







I’m linking against other libraries, what to do?

Normally other libraries should not interfere, so try to build a minimal
example using PCL (and it’s dependencies) first. If your problems is gone
without the other library please make sure that it’s not actually a problem
with one of the other libraries and add a comment in your minimal example.



Final Make

Please put only one error into the minimal example as well as include all
necessary files to build it.



References


	Latex minimal example [http://www.minimalbeispiel.de/mini-en.html]


	How to Report Bugs Effectively [http://www.chiark.greenend.org.uk/~sgtatham/bugs.html]







            

          

      

      

    

  

    
      
          
            
  
PCL 2.x API consideration guide

With the PCL 1.x API locked and a few releases already underway, it’s time to
consider what the next generation of libraries should look like. This document
discusses a series of changes to the current API, from base classes to higher
level algorithms.


Major changes


1.1 pcl::PointCloud

The PointCloud class represents the base class in PCL
for holding nD (n dimensional) data.


	The 1.x API includes the following data members:
	
	PCLHeader (coming from ROS)


	std::uint32_t seq - a sequence number


	std::uint64_t stamp - a timestamp associated with the time when the data was acquired


	std::string frame_id - a TF frame ID






	std::vector<T> points - a std C++ vector of T data. T can be a structure of any of the types defined in point_types.h.


	std::uint32_t width - the width (for organized datasets) of the data. Set to the number of points for unorganized data.


	std::uint32_t height - the height (for organized datasets) of the data. Set to 1 for unorganized data.


	bool is_dense - true if the data contains only valid numbers (e.g., no NaN or -/+Inf, etc). False otherwise.


	Eigen::Vector4f sensor_origin_ - the origin (pose) of the acquisition sensor in the current data coordinate system.


	Eigen::Quaternionf sensor_orientation_ - the origin (orientation) of the acquisition sensor in the current data coordinate system.








Proposals for the 2.x API:



	drop templating on point types, thus making PointCloud template free


	drop the PCLHeader structure, or consolidate all the above information (width, height, is_dense, sensor_origin, sensor_orientation) into a single struct


	make sure we can access a slice of the data as a 2D image, thus allowing fast 2D displaying, [u, v] operations, etc


	make sure we can access a slice of the data as a subpoint cloud: only certain points are chosen from the main point cloud


	implement channels (of a single type!) as data holders, e.g.:
* cloud[“xyz”] => gets all 3D x,y,z data
* cloud[“normals”] => gets all surface normal data
* etc


	internals should be hidden : only accessors (begin, end …) are public, this facilitating the change of the underlying structure


	Capability to construct point cloud types containing the necessary channels
at runtime. This will be particularly useful for run-time configuration of
input sensors and for reading point clouds from files, which may contain a
variety of point cloud layouts not known until the file is opened.


	Complete traits system to identify what data/channels a cloud stores at
runtime, facilitating decision making in software that uses PCL. (e.g.
generic component wrappers.)


	Stream-based IO sub-system to allow developers to load a stream of point
clouds and “play” them through their algorithm(s), as well as easily capture
a stream of point clouds (e.g. from a Kinect). Perhaps based on
Boost::Iostreams.


	Given the experience on libpointmatcher [https://github.com/ethz-asl/libpointmatcher],
we (François Pomerleau and Stéphane Magnenat) propose the following data structures:

cloud = map<space_identifier, space>
space = tuple<type, components_identifiers, data_matrix>
components_identifiers = vector<component_identifier>
data_matrix = Eigen matrix
space_identifier = string with standardised naming (pos, normals, color, etc.)
component_identifier = string with standardised naming (x, y, r, g, b, etc.)
type = type of space, underlying scalar type + distance definition (float with euclidean 2-norm distance, float representing gaussians with Mahalanobis distance, binary with manhattan distance, float with euclidean infinity norm distance, etc.)





For instance, a simple point + color scenario could be:

cloud = { "pos" => pos_space, "color" => color_space }
pos_space = ( "float with euclidean 2-norm distance", { "x", "y", "z" }, [[(0.3,0,1.3) , ... , (1.2,3.1,2)], ... , [(1,0.3,1) , ... , (2,0,3.5)] )
color_space = ( "uint8 with rgb distance", { "r", "g", "b" }, [[(0,255,0), ... , (128,255,32)] ... [(12,54,31) ... (255,0,192)]] )














1.2 PointTypes



	Eigen::Vector4f or Eigen::Vector3f ??


	Large points cause significant performance penalty for GPU. Let’s assume that point sizes up to 16 bytes are suitable. This is some compromise between SOA and AOS. Structures like pcl::Normal (size = 32) is not desirable. SOA is better in this case.









1.3 GPU support



	Containers for GPU memory. pcl::gpu::DeviceMemory/DeviceMemory2D/DeviceArray<T>/DeviceArray2D<T> (Thrust containers are incinvinient).



	DeviceArray2D<T> is container for organized point cloud data (supports row alignment)









	PointCloud Channels for GPU memory. Say, with “_gpu” postfix.



	cloud[“xyz_gpu”] => gets channel with 3D x,y,z data allocated on GPU.


	GPU functions (ex. gpu::computeNormals) create new channel in cloud (ex. “normals_gpu”) and write there. Users can preallocate the channel and data inside it in order to save time on allocations.


	Users must manually invoke uploading/downloading data to/from GPU. This provides better understanding how much each operation costs.









	Two layers in GPU part:  host layer(nvcc-independent interface) and device(for advanced use, for sharing code compiled by nvcc):



	namespace pcl::cuda (can depend on CUDA headers) or pcl::gpu (completely independent from CUDA, OpenCL support in future?).


	namespace pcl::device for device layer, only headers.









	Async operation support???









1.4 Keypoints and features



	The name Feature is a bit misleading, since it has tons of meanings. Alternatives are Descriptor or FeatureDescription.


	In the feature description, there is no need in separate FeatureFromNormals class and setNormals() method, since all the required channels are contained in one input. We still need separate setSearchSurface() though.


	There exist different types of keypoints (corners, blobs, regions), so keypoint detector might return some meta-information besides the keypoint locations (scale, orientation etc.). Some channels of that meta-information are required by some descriptors. There are options how to deliver that information from keypoints to descriptor, but it should be easy to pass it if a user doesn’t change anything. This interface should be uniform to allow for switching implementations and automated benchmarking. Still one might want to set, say, custom orientations, different from what detector returned.


to be continued…













1.5 Data slices

Anything involving a slice of data should use std::size_t for indices and not int. E.g the indices of the inliers in RANSAC, the focused points in RANSAC …



1.6 RANSAC



	Renaming the functions and internal variables: everything should be named with _src and _tgt: we have confusing names like indices_ and indices_tgt_ (and no indices_src_), setInputCloud and setInputTarget (duuh, everything is an input, it should be setTarget, setSource), in the code, a sample is named: selection, model_ and samples. getModelCoefficients is confusing with getModel (this one should be getBestSample).


	no const-correctness all over, it’s pretty scary: all the get should be const, selectWithinDistance and so on too.


	the getModel, getInliers function should not force you to fill a vector: you should just return a const reference to the internal vector: that could allow you to save a useless copy


	some private members should be made protected in the sub sac models (like sac_model_registration) so that we can inherit from them.


	the SampleConsensusModel should be independent from point clouds so that we can create our own model for whatever library. Then, the one used in the specialize models (like sac_model_registration and so on) should inherit from it and have constructors based on PointClouds like now. Maybe we should name those PclSampleConsensusModel or something (or have SampleConsensusModelBase and keep the naming for SampleConsensusModel).










Minor changes



Concepts

See http://dev.pointclouds.org/issues/567.




References


	The Little Manual of API Design







            

          

      

      

    

  

    
      
          
            
  
Evaluating pcl/registration

This is a collection of ideas on how to build an evaluation framework of pcl/registration.


Data generation


	synthetic data


	real word data (how to get ground truth?)
- Kinect
- PR2 laser scanner
- SICK laser data
- small range 3D scanner
- mid range 3D scanner (Faro)
- high end 3D scanner (Riegl, Velodyne)


	Point Types
- 2D(?)
- 3D
- RGB


	dynamics
- static scans
- scanning while driving (e.g. robots)


	size
- room
- building
- outdoor (street)






Architecture


	some lib for polygonal data


	modeling different sensors


	modeling noise


	add a trajectory file


	output a pile of .pcd files


	integrate command line tools from PCL grandfather






Evaluating different algorithms


ICP


	how does the algorithm cope with outliers


	how are the point pairs evaluated:


	does it use normal or RGB information


	does it weight the pairs differently


	which kind of point pairs are used:


	one-to-one


	one-to-many


	many-to-many















Similar Projects


	GICP [http://stanford.edu/~avsegal/resources/papers/Generalized_ICP.pdf]


	Gazebo


	slam benchmarking [http://kaspar.informatik.uni-freiburg.de/~slamEvaluation/index.php]


	Automated SLAM Evaluation [http://slameval.willowgarage.com/workshop/]








            

          

      

      

    

  

    
      
          
            
  
PCL/registration


Participants


	Michael Dixon


	Radu Rusu


	Nicola Fioraio


	Jochen Sprickerhof






Existing Frameworks


	SLAM6D


	Toro


	Hogman


	G2O


	MegaSLAM/MegaICP






Mission

Provide a common interface/architecture for all of these and future SLAM ideas.



Ideas


	Separate algorithms from data structures.


	strip down everything to it’s basics and define an interface.


	modify data structure in algorithms (you can copy them before if you need to).


	point clouds are not transformed, only the translation and rotation is updated.






Data structures


Note

These ideas are independent of actual data structures in the PCL for now. We can see later how to integrate them best.




Pose

struct Pose
{
  Eigen::Vector3 translation;
  Eigen::Quaternion rotation;
}







PointCloud

typedef vector<vector <float> > Points;







PosedPointCloud

typedef pair<Pose*, PointCloud*> PosedPointCloud;





PointCloud* can be 0.



Graph

This should hold the SLAM graph. I would propose to use Boost::Graph for it, as it allows us to access a lot of algorithms.


Note

define abstract structure.





CovarianceMatrix

typedef Eigen::Matrix4f CovarianceMatrix;







Measurement

struct Measurement
{
  Pose pose;
  CovarianceMatrix covariance;
}





Idea: change the CovarianceMatrix into a function pointer.




Interfaces


GlobalRegistration

class GlobalRegistration
{
  public:
    /**
      * \param history how many poses should be cached (0 means all)
      */
    GlobalRegistration (int history = 0) : history_(history) {}

    /**
      * \param pc a new point cloud for GlobalRegistration
      * \param pose the initial pose of the pc, could be 0 (unknown)
      */
    void addPointCloud (PointCloud &pc, Pose &pose = 0)
    {
      new_clouds_.push_back (std::make_pair (pc, pose));
    }

    /**
      * returns the current estimate of the transformation from point cloud from to point cloud to
        throws an exception if the transformation is unknown
      */
    Pose getTF (PointCloud &from, PointCloud &to);

    /**
      * run the optimization process
      * \param lod the level of detail (optional). Roughly how long it should run (TODO: better name/parametrization?)
      */
    virtual void compute (int lod = 0) {}

  private:
    int history_;
    map<PointCloud*, Pose*> poses_;
    PosedPointCloud new_clouds_;
};





This will be the base class interface for every SLAM algorithm. At any point you can add point clouds and they will be processed.
The poses can be either in a global or in a local coordinate system (meaning that they are incremental regarding the last one).
Idea: Do we need the compute? Could it be included into the addPointCloud or getTF?



GraphOptimizer

class GraphOptimizer
{
  public:
    virtual void optimize (Graph &gr) = 0;
}







LoopDetection

class LoopDetection
{
  public:
    virtual ~LoopDetection() = default;
    virtual list<std::pair<PointCloud*, PointCloud*> > detectLoop(list<PosedPointCloud*> poses, list<PosedPointCloud*> query) {} = 0;
}







GraphHandler

class GraphHandler
{
  void addPose (Graph &gr, PointCloud &pc);
  void addConstraint (Graph &gr, PointCloud &from, PointCloud &to, Pose &pose);
}






Note

I’m not sure about this one.






Example Implementations


PairwiseGlobalRegistration

class PairwiseGlobalRegistration : public GlobalRegistration
{
  public:
    PairwiseGlobalRegistration(Registration &reg) : reg_(reg) {}
    virtual void compute (int lod = 0) {}
    {
      list<PosedPointCloud >::iterator cloud_it;
      for (cloud_it = new_clouds_.begin(); cloud_it != new_clouds_.end(); cloud_it++)
      {
        if(!old_) {
          old = *cloud_it;
          continue;
        }
        reg_.align(old_, *cloud_it, transformation);
        poses[*cloud_it] = transformation;
        old_ = *cloud_it;
      }
      new_clouds_.clear();
    }

  private:
    Registration &reg_;
    PointCloud &old_;
}







DistanceLoopDetection

class DistanceLoopDetection : LoopDetection
{
  public:
    virtual list<std::pair<PointCloud*, PointCloud*> > detectLoop(list<PosedPointCloud*> poses, list<PosedPointCloud*> query)
    {
      //I want a map reduce here ;)
      list<PosedPointCloud >::iterator poses_it;
      for (poses_it = poses.begin(); poses_it != poses.end(); poses_it++)
      {
        list<PosedPointCloud >::iterator query_it;
        for (query_it = query.begin(); query_it != query.end(); query_it++)
        {
          if (dist (*poses_it, *query_it) < min_dist_)
          {
            //..
          }
      }

    }

}







ELCH

class ELCH : public GlobalRegistration
{
  public:
    ELCH(GlobalRegistration &initial_optimizer = PairwiseGlobalRegistration(), LoopDetection &loop_detection, GraphOptimizer &loop_optimizer, GraphOptimizer &graph_optimizer = LUM())
}







LUM

class ELCH : public GlobalRegistration
{
  public:
    ELCH(GlobalRegistration &initial_optimizer = PairwiseGlobalRegistration(), LoopDetection &loop_detection, GraphOptimizer &loop_optimizer, GraphOptimizer &graph_optimizer)
}





Lu and Milios style scan matching (as in SLAM6D)






            

          

      

      

    

  

    
      
          
            
  
PCL C++ Programming Style Guide

To make sure that all code in PCL is coherent and easily understood by other
developers and users, we follow a set of strict rules that everyone should
adopt. These rules are not to be broken unless there is a very good reason to
do so. Changes to these rules are always possible, but the person proposing and
changing a rule will have the unfortunate task to go and apply the rule change
to all the existing code.


Table of Contents


	1. Naming


	1.1. Files


	1.2. Directories


	1.3. Includes


	1.4. Defines & Macros


	1.5. Namespaces


	1.6. Classes / Structs


	1.7. Functions / Methods


	1.8. Variables


	1.8.1. Iterators


	1.8.2. Constants


	1.8.3. Member variables






	1.9. Return statements






	2. Indentation and Formatting


	2.1. Namespaces


	2.2. Classes


	2.3. Functions / Methods


	2.4. Braces


	2.5. Spacing


	2.6. Automatic code formatting


	2.6.1. Script usage






	2.7. Includes






	3. Structuring


	3.1. Classes and API


	3.2. Passing arguments


	3.3. Object declaration


	3.3.1 Use of auto


	3.3.2 Type qualifiers of variables














1. Naming


1.1. Files

All files should be under_scored.


	Header files have the extension .h


	Templated implementation files have the extension .hpp


	Source files have the extension .cpp






1.2. Directories

All directories and subdirectories should be under_scored.


	Header files should go under include/


	Templated implementation files should go under include/impl/


	Source files should go under src/






1.3. Includes

Include statements are made with “quotes” only if the file is in the
same directory, in any other case the include statement is made with
<chevron_brackets>, e.g.:


#include <pcl/module_name/file_name.h>
#include <pcl/module_name/impl/file_name.hpp>










1.4. Defines & Macros

Macros should all be ALL_CAPITALS_AND_UNDERSCORED.

Include guards are not implemented with defines, instead #pragma once should be used.


// the license

#pragma once

// the code










1.5. Namespaces

Namespaces should be under_scored, e.g.:


namespace pcl_io
{
  ...
}










1.6. Classes / Structs

Class names (and other type names) should be CamelCased.
Exception: if the class name contains a short acronym, the acronym itself
should be all capitals. Class and struct names are preferably nouns:
PFHEstimation instead of EstimatePFH.

Correct examples:


class ExampleClass;
class PFHEstimation;










1.7. Functions / Methods

Functions and class method names should be camelCased, and arguments are
under_scored. Function and method names are preferably verbs, and the name
should make clear what it does: checkForErrors() instead of errorCheck(),
dumpDataToFile() instead of dataFile().

Correct usage:


int
applyExample (int example_arg);










1.8. Variables

Variable names should be under_scored.


int my_variable;









1.8.1. Iterators

Iterator variables should indicate what they’re iterating over, e.g.:


std::list<int> pid_list;
std::list<int>::iterator pid_it;










1.8.2. Constants

Constants should be ALL_CAPITALS, e.g.:


const static int MY_CONSTANT = 1000;










1.8.3. Member variables

Variables that are members of a class are under_scored_, with a trailing
underscore added, e.g.:


int example_int_;











1.9. Return statements

Return statements should have their values in parentheses, e.g.:


int
main ()
{
  return (0);
}

















2. Indentation and Formatting

The standard indentation for each block in PCL is 2 spaces. Under no
circumstances, tabs or other spacing measures should be used. PCL uses a
variant of the GNU style formatting.


2.1. Namespaces

In both header and implementation files, namespaces are to be explicitly
declared, and their contents should not be indented, like clang-format
enforces in the Formatting CI job, e.g.:

namespace pcl
{

class Foo
{
  ...
};

}







2.2. Classes

The template parameters of a class should be declared on a different line,
e.g.:

template <typename T>
class Foo
{
  ...
}







2.3. Functions / Methods

The return type of each function declaration must be placed on a different
line, e.g.:

void
bar ();





Same for the implementation/definition, e.g.:

void
bar ()
{
  ...
}





or

void
Foo::bar ()
{
  ...
}





or

template <typename T> void
Foo<T>::bar ()
{
  ...
}







2.4. Braces

Braces, both open and close, go on their own lines, e.g.:

if (a < b)
{
  ...
}
else
{
  ...
}





Braces can be omitted if the enclosed block is a single-line statement, e.g.:

if (a < b)
  x = 2 * a;







2.5. Spacing

We’ll say it again: the standard indentation for each block in PCL is 2
spaces. We also include a space before the bracketed list of arguments to a
function/method, e.g.:

int
exampleMethod (int example_arg);





Class and struct members are indented by 2 spaces. Access qualifiers (public, private and protected) are put at the
indentation level of the class body and members affected by these qualifiers are indented by one more level, i.e. 2 spaces. E.g.:

namespace foo
{

class Bar
{
  int i;
  public:
    int j;
  protected:
    void
    baz ();
};
}







2.6. Automatic code formatting

We currently use clang-format-10 as the tool for auto-formatting our C++ code.
Please note that different versions of clang-format can result in slightly different outputs.

The style rules mentioned in this document are enforced via PCL’s .clang-format file [https://github.com/PointCloudLibrary/pcl/blob/master/.clang-format].
The style files which were previously distributed should now be considered deprecated.

For the integration of clang-format with various text editors and IDE’s, refer to this page [https://clang.llvm.org/docs/ClangFormat.html].

Details about the style options used can be found here [https://clang.llvm.org/docs/ClangFormatStyleOptions.html].


2.6.1. Script usage

PCL also creates a build target ‘format’ to format the whitelisted directories using clang-format.

Command line usage:

$ make format








2.7. Includes

For consistent usage, headers should be included in the following order with alphabetical grouping ensured:


	PCL headers


	All modular PCL includes, except main includes of common module.

Examples:

#include <pcl/common/common.h>
#include <pcl/simulation/camera.h>
#include <pcl/ml/dt/decision_forest.h>







	The main PCL includes of common module. These are the header files in the pcl/common/include/pcl/ directory.

Examples:

#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_cloud.h>











	Major 3rd-Party components of tests and modules


	gtest


	boost


	Eigen


	flann






	Major 3rd-Party components of apps


	Qt


	ui-files


	vtk






	Minor 3rd-Party components


	librealsense


	ros/message_filters


	opencv/opencv2


	tide


	thrust


	OpenGL, GL & GLUT






	C++ standard library headers (alphabetical)


	Others




This style can also be enforced via clang-format. For usage instructions, refer 2.6. Automatic code formatting.




3. Structuring


3.1. Classes and API

For most classes in PCL, it is preferred that the interface (all public
members) does not contain variables and only two types of methods:


	The first method type is the get/set type that allows to manipulate the
parameters and input data used by the class.


	The second type of methods is actually performing the class functionality
and produces output, e.g. compute, filter, segment.






3.2. Passing arguments

For get/set type methods the following rules apply:


	If large amounts of data needs to be set (usually the case with input data
in PCL) it is preferred to pass a boost shared pointer instead of the actual
data.


	Getters always need to pass exactly the same types as their respective setters
and vice versa.


	For getters, if only one argument needs to be passed this will be done via
the return keyword. If two or more arguments need to be passed they will
all be passed by reference instead.




For the compute, filter, segment, etc. type methods the following rules apply:


	The output arguments are preferably non-pointer type, regardless of data
size.


	The output arguments will always be passed by reference.






3.3. Object declaration


3.3.1 Use of auto


	For Iterators auto must be used as much as possible


	In all the other cases auto can be used at the author’s discretion


	Use const auto references by default in range loops. Drop the const if the item needs to be modified.






3.3.2 Type qualifiers of variables


	Declare variables const when they don’t need to be modified.


	Use const references whenever you don’t need a copy of the variable.


	Use of unsigned variables if the value is sure to not go negative by
use and by definition of the variable










            

          

      

      

    

  

    
      
          
            
  
Point Cloud Library (PCL) public roadmap




            

          

      

      

    

  

    
      
          
            
  
Single compilation units

Even before reading [1], we noticed a great speed up in compile time for all
PCL libraries if instead of compiling N object files and linking them together,
we compile only one, and include all the sources of the N files in this main
source. If you peek at an older version of PCL, you might notice things along
the lines of:

1 // Include the implementations instead of compiling them separately to speed up compile time
2 #include "extract_indices.cpp"
3 #include "passthrough.cpp"
4 #include "project_inliers.cpp"
5 #include "statistical_outlier_removal.cpp"
6 #include "voxel_grid.cpp"





and in CMakeLists.txt:

1 rosbuild_add_library (pcl_ros_filters
2                       src/pcl_ros/filters/filter.cpp
3                       # Compilation is much faster if we include all the following CPP files in filters.cpp
4                       #src/pcl_ros/filters/passthrough.cpp
5                       #src/pcl_ros/filters/project_inliers.cpp
6                       #src/pcl_ros/filters/extract_indices.cpp
7                       #src/pcl_ros/filters/statistical_outlier_removal.cpp
8                       #src/pcl_ros/filters/voxel_grid.cpp
9                      )





For more information on how/why this works, see [1].



[1]
(1,2)
http://gamesfromwithin.com/physical-structure-and-c-part-2-build-times






            

          

      

      

    

  

    
      
          
            
  
Vertical SSE for PCL2.0


Note

All code is available from
https://kforge.ros.org/projects/mihelich/services/pcl_simd/.




Representing point data

In PCL currently, points are stored with their fields interleaved. For the
simplest PointXYZ type, this looks like:

XYZ_XYZ_XYZ_XYZ_ ...





where _ denotes an extra padding float so that each point is 16-byte
aligned. Operating on XYZ_ data efficiently often requires the use of
horizontal SSE instructions, which perform computations using multiple
elements of the same SSE register.

This representation is also known as Array-of-Structures (AoS). PointXYZ
is defined as a struct, and all fields for an individual point are stored
together in memory.

Instead a vertical representation, aka Structure-of-Arrays (SoA), can be
used:

XXXXXXXX ...
YYYYYYYY ...
ZZZZZZZZ ...





This layout fits traditional vertical SSE processing better. Most arithmetic
SSE instructions are binary operations on corresponding elements of two SSE
registers.



Why does PCL use AoS?

PCL’s use of AoS, normally non-optimal, does have its logic. In PCL, frequently
we wish to process only some (indexed / valid) subset of a point cloud. Besides
dense processing of all points, we then have two other cases.


Indexed subsets

PCL operators routinely provide a setIndices() method, ordering them to use only certain points
identified by index. With the AoS representation, each individual point can be
used in an SSE register via a simple aligned load. Indexed access therefore
does not much complicate an SSE-optimized implementation.

Vertical SSE (in the dense case) processes four adjacent points simultaneously,
and indexed access breaks the adjacency requirement. Instead of an aligned
load, the implementation must “gather” the data for the next four indexed
points (spread out in memory).



Organized point clouds

PCL permits point clouds with missing data. For imager-based 3D sensors, this
allows point clouds to retain their 2D structure, making it trivial to identify
nearby points. Invalid points have each field set to NaN, so that it is clear
when invalid data is accidentally used in a computation.

Handling invalid points in PCL (with AoS) is again rather simple. For each
point, check if X is NaN; if so, ignore it.

The SoA situation is much more complicated. Since we operate on four points at
a time, we have to check if any of the four points are invalid. If so, it
becomes very tricky to use SSE at all without destroying our result. Masking
tricks are possible, but imply some overhead over the simple dense code.




Horizontal or vertical?

Both representations have pros and cons.

Horizontal


	Pros


	More intuitive, easier to write code for


	Handling indexed subsets is simple - can still use aligned loads


	Handling NaNs also simple






	Cons


	Clearly slower at dense processing


	Waste space and computation on padding elements








Vertical


	Pros


	Clearly faster at dense processing


	No wasted space - only 3/4 as many loads required


	No wasted computation


	May have less loop overhead, since you process 4 points per iteration
instead of 1






	Cons


	Less intuitive


	Indexed subsets require gathering data for non-adjacent points


	Handling NaNs is complicated










Data structures

For benchmarking, we define two very simple point cloud representations:

// Array-of-Structures
struct AOS
{
  float x;
  float y;
  float z;
  float h;
};

// Structure-of-Arrays
struct SOA
{
  float* x;
  float* y;
  float* z;
  std::size_t size;
};







Computations considered

We benchmark two basic operations:


	Compute the dot product of every point in a cloud with a given point


	Compute the centroid of a point cloud




For both operations, we implemented several versions covering the space of:


	Horizontal (AoS) or vertical (SoA)


	Dense or indexed


	SSE instruction set




Representative examples are listed below.


Dot product

Vertical (SoA), SSE2-optimized:

void dotSSE2 (const SOA& vectors, const AOS& vector,
              float* result, unsigned long size)
{
  float x = vector.x, y = vector.y, z = vector.z;

  // Broadcast X, Y, Z of constant vector into 3 SSE registers
  __m128 vX  = _mm_set_ps1(x);
  __m128 vY  = _mm_set_ps1(y);
  __m128 vZ  = _mm_set_ps1(z);
  __m128 X, Y, Z;

  unsigned i = 0;
  for ( ; i < size - 3; i += 4)
  {
    // Load data for next 4 points
    X = _mm_load_ps (vectors.x + i);
    Y = _mm_load_ps (vectors.y + i);
    Z = _mm_load_ps (vectors.z + i);

    // Compute X*X'+Y*Y'+Z*Z' for each point
    X = _mm_mul_ps (X, vX);
    Y = _mm_mul_ps (Y, vY);
    Z = _mm_mul_ps (Z, vZ);
    X = _mm_add_ps (X, Y);
    X = _mm_add_ps (X, Z);

    // Store results
    _mm_store_ps(result + i, X);
  }

  // Handle any leftovers at the end
  for ( ; i < size; ++i)
  {
    result[i] = vectors.x[i]*x + vectors.y[i]*y + vectors.z[i]*z;
  }
}





Horizontal (AoS), SSE4.1-optimized (with horizontal DPPS instruction):

void dotSSE4_1 (const AOS* vectors, const AOS& vector,
                float* result, unsigned long size)
{
  // Load constant vector into an SSE register
  __m128 vec = _mm_load_ps ((const float*) &vector);
  __m128 XYZH;

  // Set mask to ignore the padding elements
  const int mask = 123;
  for (unsigned i = 0; i < size; ++i)
  {
    // Load next point
    XYZH = _mm_load_ps ((const float*)(vectors + i));

    // Dot product from SSE4.1
    XYZH = _mm_dp_ps (XYZH, vec, mask);

    // Store single result (the bottom register element)
    _mm_store_ss (&(result [i]), XYZH);
  }
}







Centroid

Vertical (SoA), SSE2-optimized:

void centroidSSE2 (const SOA& vectors, AOS& result, std::size_t size)
{
  __m128 X_sum = _mm_setzero_ps();
  __m128 Y_sum = _mm_setzero_ps();
  __m128 Z_sum = _mm_setzero_ps();
  __m128 X, Y, Z;

  std::size_t i = 0;
  for ( ; i < size - 3; i += 4)
  {
    // Load next 4 points
    X = _mm_load_ps (vectors.x + i);
    Y = _mm_load_ps (vectors.y + i);
    Z = _mm_load_ps (vectors.z + i);

    // Accumulate 4 sums in each dimension
    X_sum = _mm_add_ps(X_sum, X);
    Y_sum = _mm_add_ps(Y_sum, Y);
    Z_sum = _mm_add_ps(Z_sum, Z);
  }

  // Horizontal adds (HADD from SSE3 could help slightly)
  float* pX = reinterpret_cast<float*>(&X_sum);
  float* pY = reinterpret_cast<float*>(&Y_sum);
  float* pZ = reinterpret_cast<float*>(&Z_sum);
  result.x = pX[0] + pX[1] + pX[2] + pX[3];
  result.y = pY[0] + pY[1] + pY[2] + pY[3];
  result.z = pZ[0] + pZ[1] + pZ[2] + pZ[3];

  // Leftover points
  for ( ; i < size; ++i)
  {
    result.x += vectors.x[i];
    result.y += vectors.y[i];
    result.z += vectors.z[i];
  }

  // Average
  float inv_size = 1.0f / size;
  result.x *= inv_size;
  result.y *= inv_size;
  result.z *= inv_size;
}





Horizontal (AoS), SSE2-optimized:

void centroidSSE2 (const AOS* vectors, AOS& result, std::size_t size)
{
  __m128 sum = _mm_setzero_ps();

  for (unsigned i = 0; i < size; ++i)
  {
    __m128 XYZH = _mm_load_ps ((const float*)(vectors + i));
    sum = _mm_add_ps(sum, XYZH);
  }
  _mm_store_ps((float*)&result, sum);

  float inv_size = 1.0f / size;
  result.x *= inv_size;
  result.y *= inv_size;
  result.z *= inv_size;
}







Indexed

When using point indices, the vertical implementation can no longer use aligned
loads. Instead it’s best to use the _mm_set_ps intrinsic to gather the next
four points.

Vertical (SoA) dot product, SSE2-optimized:

void dotIndexedSSE2 (const SOA& vectors, const AOS& vector,
                     const int* indices, float* result, unsigned long size)
{
  float x = vector.x, y = vector.y, z = vector.z;

  __m128 vX  = _mm_set_ps1(x);
  __m128 vY  = _mm_set_ps1(y);
  __m128 vZ  = _mm_set_ps1(z);
  __m128 X, Y, Z;

  unsigned i = 0;
  for ( ; i < size - 3; i += 4)
  {
    int i0 = indices[i + 0];
    int i1 = indices[i + 1];
    int i2 = indices[i + 2];
    int i3 = indices[i + 3];

    // Gather next four indexed points
    X = _mm_set_ps(vectors.x[i3], vectors.x[i2], vectors.x[i1], vectors.x[i0]);
    Y = _mm_set_ps(vectors.y[i3], vectors.y[i2], vectors.y[i1], vectors.y[i0]);
    Z = _mm_set_ps(vectors.z[i3], vectors.z[i2], vectors.z[i1], vectors.z[i0]);

    // Computation
    X = _mm_mul_ps (X, vX);
    Y = _mm_mul_ps (Y, vY);
    Z = _mm_mul_ps (Z, vZ);
    X = _mm_add_ps (X, Y);
    X = _mm_add_ps (X, Z);

    // Store result
    _mm_store_ps(result + i, X);
  }

  for ( ; i < size; ++i)
  {
    int idx = indices[i];
    result[i] = vectors.x[idx]*x + vectors.y[idx]*x + vectors.z[idx]*z;
  }
}








Benchmarks (random data)

The test point cloud is randomly generated, 640x480, dense. Each operation is
repeated 1000 times.

For indexed tests, the indices list every 4th point. More random index patterns
would change execution time by affecting caching and prefetching, but I’d
expect such effects to be similar for horizontal and vertical code.

“Scalar” code uses no vector instructions, otherwise the instruction set is
listed. A trailing u# means the code was unrolled by factor #.


Dot product


Dense

Horizontal (AOS)
  Scalar:   0.621674 seconds
  SSE2:     0.756300 seconds
  SSE4.1:   0.532441 seconds
  SSE4.1u4: 0.476841 seconds
Vertical (SOA)
  Scalar:   0.519625 seconds
  SSE2:     0.215499 seconds





The vertical SSE2 code is the clear winner, more than twice as fast as
horizontal code even with the special horizontal dot product from SSE4.1.

On the first i7 I used, horizontal SSE4.1 was actually the slowest
implementation. Unrolling it x4 helped significantly, although it was still
much worse than vertical SSE2. I attributed this to the very high latency of
the DPPS instruction; it takes 11 cycles before the result can be stored.
Unrolling helps hide the latency by providing more computation to do during
that time. I don’t know why the results from my office i7 (shown above) are so
different.



Indexed

Horizontal (AOS)
  Scalar:   0.271768 seconds
  SSE2:     0.276114 seconds
  SSE4.1:   0.259613 seconds
Vertical (SOA)
  Scalar:   0.193394 seconds
  SSE2:     0.177262 seconds





SSE optimization actually gives meager benefits in both the horizontal and
vertical cases. However vertical SSE2 is still the winner.




Centroid

The story for centroid is similar; vertical SSE2 is fastest, significantly so
for dense data.


Dense

Horizontal (AOS)
  Scalar:  0.628597 seconds
  SSE2:    0.326645 seconds
  SSE2u2:  0.247539 seconds
  SSE2u4:  0.236474 seconds
Vertical (SOA)
  Scalar:  0.711040 seconds
  SSE2:    0.149806 seconds







Indexed

Horizontal (AOS)
  Scalar:  0.256237 seconds
  SSE2:    0.195724 seconds
Vertical (SOA)
  Scalar:  0.194030 seconds
  SSE2:    0.166639 seconds









Vertical SSE for organized point clouds

We still need a way to effectively use vertical SSE for organized point clouds
(containing NaNs). A promising approach is to compute a run-length encoding
(RLE) of the valid points as a preprocessing step. The data structure is very
simple:

struct RlePair
{
  std::size_t good;
  std::size_t skip;
};
typedef std::vector<RlePair> RLE;





The RLE counts the length of alternating runs of valid and invalid points. Once
computed, it allows us to process only valid points without explicitly checking
each one for NaNs. In fact, operations become O(#valid points) instead of
O(#total points), which can itself be a win if many points are invalid.

In real scenes, valid points are clustered together (into objects), so valid
(and invalid) runs should be lengthy on average. A long run of valid points can
be split into <4 beginning points, <4 final points, and a run of aligned, valid
point data which can be safely processed with vertical SSE.



Abstracting point iteration

We are still left with three distinct cases for processing point clouds,
requiring different methods of iterating over point data:


	Dense (no NaNs)


	Indexed


	Organized (contains NaNs)




Writing and maintaining three copies of each PCL algorithm is a huge burden.
The RLE for organized data in particular imposes a relatively complicated
iteration method. Ideally we should be able to write the computational core of
an algorithm only once, and have it work efficiently in each of the three cases.

Currently PCL does not meet this goal. In fact, core algorithms tend to have
four near-identical implementations:


	Dense


	Dense indexed


	Organized


	Organized indexed




I think it’s unnecessary to distinguish between “dense indexed” and “organized
indexed”, if we require that indices point to valid data.


Writing algorithms as computational kernels

As an experiment, I rewrote the vertical centroid as a kernel class. This
implements only the computation, without worrying about the memory layout of
the whole cloud:

struct CentroidKernel
{
  // State
  float x_sum, y_sum, z_sum;
  __m128 X_sum, Y_sum, Z_sum;
  std::size_t count;
  AOS result;

  void init()
  {
    // Initialization
    x_sum = y_sum = z_sum = 0.0f;
    X_sum = _mm_setzero_ps();
    Y_sum = _mm_setzero_ps();
    Z_sum = _mm_setzero_ps();
    count = 0;
  }

  // Scalar operator
  inline void operator() (float x, float y, float z)
  {
    x_sum += x;
    y_sum += y;
    z_sum += z;
    ++count;
  }

  // SIMD operator
  inline void operator() (__m128 X, __m128 Y, __m128 Z)
  {
    X_sum = _mm_add_ps(X_sum, X);
    Y_sum = _mm_add_ps(Y_sum, Y);
    Z_sum = _mm_add_ps(Z_sum, Z);
    count += 4;
  }

  void reduce()
  {
    float* pX = reinterpret_cast<float*>(&X_sum);
    float* pY = reinterpret_cast<float*>(&Y_sum);
    float* pZ = reinterpret_cast<float*>(&Z_sum);
    result.x = pX[0] + pX[1] + pX[2] + pX[3] + x_sum;
    result.y = pY[0] + pY[1] + pY[2] + pY[3] + y_sum;
    result.z = pZ[0] + pZ[1] + pZ[2] + pZ[3] + z_sum;

    float inv_count = 1.0f / count;
    result.x *= inv_count;
    result.y *= inv_count;
    result.z *= inv_count;
  }
};







Kernel applicators

We can then define applicator functions that apply a kernel to a particular
case of point cloud. The dense version simply uses aligned loads:

template <typename Kernel>
void applyDense (Kernel& kernel, const SOA& pts)
{
  kernel.init();

  std::size_t i = 0;
  for ( ; i < pts.size - 3; i += 4)
  {
    __m128 X = _mm_load_ps (pts.x + i);
    __m128 Y = _mm_load_ps (pts.y + i);
    __m128 Z = _mm_load_ps (pts.z + i);

    kernel(X, Y, Z);
  }
  for ( ; i < pts.size; ++i)
  {
    kernel(pts.x[i], pts.y[i], pts.z[i]);
  }

  kernel.reduce();
}





The indexed version performs the necessary data gathering:

template <typename Kernel>
void applySparse (Kernel& kernel, const SOA& pts,
                  const std::vector<int>& indices)
{
  kernel.init();

  std::size_t i = 0;
  for ( ; i < indices.size() - 3; i += 4)
  {
    int i0 = indices[i + 0];
    int i1 = indices[i + 1];
    int i2 = indices[i + 2];
    int i3 = indices[i + 3];

    // Gather next four indexed points
    __m128 X = _mm_set_ps(pts.x[i3], pts.x[i2], pts.x[i1], pts.x[i0]);
    __m128 Y = _mm_set_ps(pts.y[i3], pts.y[i2], pts.y[i1], pts.y[i0]);
    __m128 Z = _mm_set_ps(pts.z[i3], pts.z[i2], pts.z[i1], pts.z[i0]);

    kernel(X, Y, Z);
  }
  for ( ; i < indices.size(); ++i)
  {
    int idx = indices[i];
    kernel(pts.x[idx], pts.y[idx], pts.z[idx]);
  }

  kernel.reduce();
}





The organized version is most complicated, and uses the RLE to vectorize as
much of the computation as possible:

template <typename Kernel>
void applyOrganized (Kernel& kernel, const SOA& pts, const RLE& rle)
{
  kernel.init();

  std::size_t i = 0;
  for (RLE::const_iterator rle_it = rle.begin(); rle_it != rle.end(); ++rle_it)
  {
    // Process current stretch of good pixels
    std::size_t good = rle_it->good;
    std::size_t skip = rle_it->skip;
    std::size_t good_end = i + good;

    // Any unaligned points at start
    std::size_t unaligned_end = std::min( (i + 3) & ~3, good_end );
    for ( ; i < unaligned_end; ++i)
      kernel(pts.x[i], pts.y[i], pts.z[i]);
    // Aligned SIMD point data
    for ( ; i + 4 <= good_end; i += 4)
    {
      __m128 X = _mm_load_ps (pts.x + i);
      __m128 Y = _mm_load_ps (pts.y + i);
      __m128 Z = _mm_load_ps (pts.z + i);

      kernel(X, Y, Z);
    }
    // <4 remaining points
    for ( ; i < good_end; ++i)
      kernel(pts.x[i], pts.y[i], pts.z[i]);

    // Skip the following stretch of NaNs
    i += skip;
  }

  kernel.reduce();
}





The kernel + applicator combinations for the dense and indexed cases were added
to the centroid benchmark for random point data, and show identical performance
to the hand-written vertical SSE2 code.

The above code is written with simplicity in mind. The biggest improvement
would be to combine the scalar and SSE operator() (...) functions; this
could possibly be achieved by using Eigen::Array as an SSE backend (similar
to how Eigen::Matrix maps are currently used), something like:

// N can be 1 or 4
template <int N>
void operator() (const Eigen::Array<float, N, 1>& x,
                 const Eigen::Array<float, N, 1>& y,
                 const Eigen::Array<float, N, 1>& z);








Benchmarks (real point clouds)

Finally, we compare CentroidKernel + applicator to
pcl::compute3DCentroid() for several real organized (and one dense) point
clouds.

The point clouds used are:


	capture000X.pcd [https://github.com/PointCloudLibrary/data/tree/master/tutorials/pairwise]


	table_scene_mug_stereo_textured.pcd [https://github.com/PointCloudLibrary/data/blob/master/tutorials/table_scene_lms400.pcd?raw=true]


	table_scene_lms400.pcd [https://github.com/PointCloudLibrary/data/blob/master/tutorials/table_scene_lms400.pcd?raw=true]




capture0001.pcd (organized, 640x480, 57553 NaNs):

PCL:    0.926901 seconds

RLE:    0.348173 seconds
Kernel: 0.174194 seconds





capture0002.pcd (organized, 640x480, 57269 NaNs):

PCL:    0.931111 seconds

RLE:    0.345437 seconds
Kernel: 0.171373 seconds





Even if you include the RLE computation time (which could be amortized over
several operations, and perhaps optimized) in the total, the vertical kernel
beats the current PCL implementation. Discounting RLE, it’s more than 5x faster.

table_scene_mug_stereo_textured.pcd (organized, 640x480, 97920 NaNs):

PCL:    3.36001 seconds

RLE:    0.379737 seconds
Kernel: 0.183159 seconds





The very poor performance of PCL on the mug scene is a mystery to me. Perhaps
the larger number of NaNs has an effect?

table_scene_lms400.pcd (dense, 460400 pts):

PCL:    0.678805 seconds

RLE:    N/A
Kernel: 0.242546 seconds







Conclusions

For the simple operations considered here, vertical SSE is a huge win. In the
best case, this suggests that much of PCL could get at least a 3x speedup by
switching to the more SSE-friendly memory layout.

Vertical SSE presents some complications in usage and implementation for PCL,
but good solutions (RLE, kernel abstraction) are possible.

Looking at instruction sets, vertical SSE is especially advantageous both on
older and very new processors. On older processors, because it makes excellent
use of SSE2 instructions, whereas horizontal SSE may require horizontal
instructions (introduced in SSE3 and later) for good performance. On new
processors, because the latest AVX extensions expand SSE register to 256 bits,
allowing 8 floating point operations at a time instead of 4. The vertical SSE
techniques shown here trivially extend to AVX, and future instruction sets will
likely expand SSE registers even further. The upcoming AVX2 extensions add
dedicated gather instructions, which should improve performance with indices.



Remaining questions

Are there PCL algorithms that aren’t easily implementable in the proposed
kernel style?

How to handle nearest neighbor searches? These may be hard to vectorize.





            

          

      

      

    

  _images/distcc.png
Host |slot |File state.

localhost 1
nevada 0
nevada 1
nevada 2
nevada 3
proforma 0
proforma 1
proforma 2

=) L S

[Tasks.
forke compic [N
woce  comoie NN HH W
aeze  compic NN NN
s compie [ INENENEN

dotagromc preprocess [N W
oope compie [N
dve  Receve NN
pogeatinc  preprocess [N

83






_images/distcc_plot.png
seconds

700

T
“data” ——






_images/ccache.png
Elapsed time Percent Factor

Without ccache 367.11s 100.00% 1.0000 x
ceache 3.0 direct, first time 385.675 105.00 % 0.9519x
ceache 3.0 direct, second time 9705 2.64 % 37.8464 x
ceache 3.0 prepr., first time 382205 104.13% 0.9604 x

ceache 3.0 prepr., second time 23905 6.51% 153603 x





_images/optimize.png
o tums on the following optimization flags:

~fauto-inc-dec

~foonpare-elin

~foprop-registers

-zdee

-Edefer-pop

~tdelayed-branch
fdse






_images/unitybuild.jpg
1B #include "../Dialog/Dialog.cpp"

2| #include "../Dialog/ModalDialog. cpp”

3| #include "../GDI/Brush.cpp”

4| #include "../GDI/Font.cpp"

5| #include *../Helper/Thread. cpp"

6| #include "../Window/MDIChi1dWindow. cpp
7| #include *../Window/MDIParentWindow.cpp”
8| #include "../Window/SDIWindow.cpp”





nav.xhtml

    
      Table of Contents


      
        		
          Compiling PCL
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





