Point Cloud Library

Release 0.0

unknown

CONTENTS

1	Basic Usage	3
2	Advanced Usage	7
3	Features	9
4	Filtering	13
5	I/O	15
6	Keypoints	19
7	KdTree	21
8	Octree	23
9	Range Images	25
10	Recognition	27
11	Registration	29
12	Sample Consensus	31
13	Segmentation	33
14	Surface	37
15	Visualization	39
16	Applications	41
17	GPU	43

The following links describe a set of basic PCL tutorials. Please note that their source codes may already be provided as part of the PCL regular releases, so check there before you start copy & pasting the code. The list of tutorials below is automatically generated from reST files located in our git repository.

Note: Before you start reading, please make sure that you go through the higher-level overview documentation at http://www.pointclouds.org/documentation/, under **Getting Started**. Thank you.

As always, we would be happy to hear your comments and receive your contributions on any tutorial.

CONTENTS 1

2 CONTENTS

ONE

BASIC USAGE

· walkthrough

Title: PCL Functionality Walkthrough

Author: *Razvan G. Mihalyi* Compatibility: > PCL 1.6

Takes the reader through all of the PCL modules and offers basic explana-

tions on their functionalities.

• basic_structures

Title: Getting Started / Basic Structures

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

Presents the basic data structures in PCL and discusses their usage with a

simple code example.

• using_pcl_pcl_config

Title: Using PCL in your own project

Author: *Nizar Sallem* Compatibility: > PCL 1.0

In this tutorial, we will learn how to link your own project to PCL using

cmake.

• compiling_pcl_posix

Title: Compiling PCL from source on POSIX compliant systems

Author: *Victor Lamoine* Compatibility: > PCL 1.0

In this tutorial, we will explain how to compile PCL from sources on

POSIX/Unix systems.

• building_pcl

Title: Explaining PCL's cmake options

Author: *Nizar Sallem* Compatibility: > PCL 1.0

In this tutorial, we will explain the basic PCL cmake options, and ways to tweak

them to fit your project.

• pcl_vcpkg_windows

Title: Install PCL using VCPKG

Author: Lars Glud

Compatibility: PCL version available on VCPKG and Master, unless VCPKG updates a

dependency before PCL is ready for it.

In this tutorial, it is explained how to install PCL or PCL dependencies.

• compiling_pcl_dependencies_windows

Title: Compiling PCL's dependencies from source on Windows

Authors: Alessio Placitelli and Mourad Boufarguine

Compatibility: > PCL 1.0

In this tutorial, we will explain how to compile PCL's 3rd party dependencies from source on Microsoft Windows.

• compiling_pcl_windows

Title: Compiling PCL on Windows

Author: *Mourad Boufarguine* Compatibility: > PCL 1.0

In this tutorial, we will explain how to compile PCL on Microsoft Windows.

• compiling_pcl_macosx

Title: Compiling PCL and its dependencies from MacPorts and source on Mac OS

X

Author: *Justin Rosen* Compatibility: > PCL 1.0

This tutorial explains how to build the Point Cloud Library from MacPorts and source

on Mac OS X platforms.

• compiling_pcl_docker

Title: Compiling PCL using docker

Author: *Theodoros Nikolaou* Compatibility: > PCL 1.12

This tutorial explains how to build and install PCL from source using

docker

• installing_homebrew

Title: Installing on Mac OS X using Homebrew

Author: *Geoffrey Biggs* Compatibility: > PCL 1.2

This tutorial explains how to install the Point Cloud Library on Mac OS X using Home-

brew. Both direct installation and compiling PCL from source are explained.

• using_pcl_with_eclipse

Title: Using Eclipse as your PCL editor

Author: Koen Buys

Compatibility: PCL git master

This tutorial shows you how to get your PCL as a project in Eclipse.

• generate_local_doc

Title: Generate a local documentation for PCL

Author: *Victor Lamoine* Compatibility: PCL > 1.0

This tutorial shows you how to generate and use a local documentation for

PCI.

• matrix_transform

Title: Using matrixes to transform a point cloud

Author: *Victor Lamoine* Compatibility: > PCL 1.5

This tutorial shows you how to transform a point cloud using a matrix.

TWO

ADVANCED USAGE

• adding_custom_ptype

Title: Adding your own custom PointT point type

Author: Radu B. Rusu

Compatibility: > PCL 0.9, < PCL 2.0

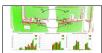
This document explains what templated point types are in PCL, why do they

exist, and how to create and use your own *PointT* point type.

• writing_new_classes

Title: Writing a new PCL class

Author: Radu B. Rusu, Luca Penasa Compatibility: > PCL 0.9, < PCL 2.0


This short guide is to serve as both a HowTo and a FAQ for writing new PCL

classes, either from scratch, or by adapting old code.

THREE

FEATURES

• how_3d_features_work

Title: How 3D features work

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

This document presents a basic introduction to the 3D feature estimation methodologies in PCL.

• normal_estimation

Title: Estimating Surface Normals in a PointCloud

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

This tutorial discusses the theoretical and implementation details of the surface normal estimation module in PCL.

• normal_estimation_using_integral_images

Title: Normal Estimation Using Integral Images

Author: *Stefan Holzer* Compatibility: > PCL 1.0

In this tutorial we will learn how to compute normals for an organized point cloud using integral images.

• pfh_estimation

Title: Point Feature Histograms (PFH) descriptors

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

This tutorial introduces a family of 3D feature descriptors called PFH (Point Feature Histograms) and discusses their implementation details from PCL's perspective.

• fpfh_estimation

Title: Fast Point Feature Histograms (FPFH) descriptors

Author: *Radu B. Rusu* Compatibility: > PCL 1.3

This tutorial introduces the FPFH (Fast Point Feature Histograms) 3D descriptor

and discusses their implementation details from PCL's perspective.

· vfh_estimation

Title: Estimating VFH signatures for a set of points

Author: *Radu B. Rusu* Compatibility: > PCL 0.8

This document describes the Viewpoint Feature Histogram (VFH) descriptor, a novel representation for point clusters for the problem of Cluster (e.g., Object) Recognition and 6DOF Pose Estimation.

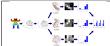
narf feature extraction

Title: How to extract NARF features from a range image

Author: *Bastian Steder* Compatibility: > 1.3

In this tutorial, we will learn how to extract NARF features from a range image.

• moment_of_inertia


Title: Moment of inertia and eccentricity based descriptors

Author: *Sergey Ushakov* Compatibility: > PCL 1.7

In this tutorial we will learn how to compute moment of inertia and eccentricity of the cloud. In addition to this we will learn how to extract AABB and OBB.

• rops_feature

10 Chapter 3. Features

Title: RoPs (Rotational Projection Statistics) feature

Author: *Sergey Ushakov* Compatibility: > PCL 1.7

In this tutorial we will learn how to compute RoPS feature.

• gasd_estimation

Title: Globally Aligned Spatial Distribution (GASD) descriptors

Author: *Joao Paulo Lima* Compatibility: >= PCL 1.9

This document describes the Globally Aligned Spatial Distribution (GASD) global de-

scriptor to be used for efficient object recognition and pose estimation.

12 Chapter 3. Features

FOUR

FILTERING

· passthrough

Title: Filtering a PointCloud using a PassThrough filter

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to remove points whose values fall in-

side/outside a user given interval along a specified dimension.

· voxelgrid

Title: Downsampling a PointCloud using a VoxelGrid filter

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to downsample (i.e., reduce the number of

points) a Point Cloud.

• statistical_outlier_removal

Title: Removing sparse outliers using StatisticalOutlierRemoval

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to remove sparse outliers from noisy data, using

StatisticalRemoval.

• project_inliers

Title: Projecting points using a parametric model

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to project points to a parametric model

(i.e., plane).

• extract_indices

Title: Extracting indices from a PointCloud

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to extract a set of indices given by a segmenta-

tion algorithm.

• remove_outliers

Title: Removing outliers using a Conditional or RadiusOutlier removal

Author: *Gabe O'Leary* Compatibility: > PCL 1.0

In this tutorial, we will learn how to remove outliers from noisy data, using Con-

ditionalRemoval, RadiusOutlierRemoval.

14 Chapter 4. Filtering

FIVE

I/O

• pcd_file_format

Title: The PCD (Point Cloud Data) file format

Author: *Radu B. Rusu* Compatibility: > PCL 0.9

This document describes the PCD file format, and the way it is used inside PCL.

• reading_pcd

Title: Reading Point Cloud data from PCD files

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to read a Point Cloud from a PCD file.

• writing_pcd

Title: Writing Point Cloud data to PCD files

Author: *Radu B. Rusu* Compatibility: > PCL 1.0

In this tutorial, we will learn how to write a Point Cloud to a PCD file.

• concatenate_clouds

Title: Concatenate the fields or points of two Point Clouds

Author: Gabe O'Leary / Radu B. Rusu

Compatibility: > PCL 1.0

In this tutorial, we will learn how to concatenate both the fields and the point data of two Point Clouds. When concatenating fields, one PointClouds contains only *XYZ* data, and the other contains *Surface Normal* information.

• openni_grabber

Title: Grabbing Point Clouds from an OpenNI camera

Author: Nico Blodow Compatibility: > PCL 1.0

In this tutorial, we will learn how to acquire point cloud data from an OpenNI

camera.

• hdl_grabber

Title: Grabbing Point Clouds from a Velodyne High Definition LiDAR (HDL)

Author: Keven Ring Compatibility: >= PCL 1.7

In this tutorial, we will learn how to acquire point cloud data from a Velodyne HDL.

· dinast grabber

Title: Grabbing Point Clouds from Dinast Cameras

Author: Marco A. Gutierrez Compatibility: >= PCL 1.7

In this tutorial, we will learn how to acquire point cloud data from a Dinast camera.

· ensenso_cameras

Title: Grabbing point clouds from Ensenso cameras

Author: Victor Lamoine Compatibility: >= PCL 1.8.0

In this tutorial, we will learn how to acquire point cloud data from an IDS-

Imaging Ensenso camera.

• david_sdk

Title: Grabbing point clouds / meshes from davidSDK scanners

Author: Victor Lamoine Compatibility: >= PCL 1.8.0

In this tutorial, we will learn how to acquire point cloud or mesh data from

a davidSDK scanner.

• depth_sense_grabber

16 Chapter 5. I/O

Title: Grabbing point clouds from DepthSense cameras

Author: *Sergey Alexandrov* Compatibility: >= PCL 1.8.0

In this tutorial we will learn how to setup and use DepthSense cameras within $\ensuremath{\mathsf{PCL}}$

on both Linux and Windows platforms.

18 Chapter 5. I/O

SIX

KEYPOINTS

• narf_keypoint_extraction

Title: How to extract NARF keypoints from a range image

Author: *Bastian Steder* Compatibility: > 1.3

In this tutorial, we will learn how to extract NARF keypoints from a range image.

SEVEN

KDTREE

• kdtree_search

Title: **KdTree Search** Author: *Gabe O'Leary* Compatibility: > PCL 1.0

In this tutorial, we will learn how to search using the nearest neighbor method for k-d trees

22 Chapter 7. KdTree

EIGHT

OCTREE

• octree_compression

Title: Point cloud compression

Author: *Julius Kammerl* Compatibility: > PCL 1.0

In this tutorial, we will learn how to compress a single point cloud and streams of

point clouds.

· octree_search

Title: Octrees for spatial partitioning and neighbor search

Author: *Julius Kammerl* Compatibility: > PCL 1.0

In this tutorial, we will learn how to use octrees for spatial partitioning and nearest

neighbor search.

• octree_change_detection

Title: Spatial change detection on unorganized point cloud data

Author: *Julius Kammerl* Compatibility: > PCL 1.0

In this tutorial, we will learn how to use octrees for detecting spatial changes within

point clouds.

24 Chapter 8. Octree

NINE

RANGE IMAGES

• range_image_creation

Title: Creating Range Images from Point Clouds

Author: *Bastian Steder*Compatibility: > PCL 1.0

This tutorial demonstrates how to create a range image from a point cloud and a given

sensor position.

• range_image_border_extraction

Title: Extracting borders from Range Images

Author: *Bastian Steder* Compatibility: > PCL 1.3

This tutorial demonstrates how to extract borders (traversals from foreground to back-

ground) from a range image.

TEN

RECOGNITION

• correspondence_grouping

Title: The PCL Recognition API

Author: Tommaso Cavallari, Federico Tombari

Compatibility: > PCL 1.6

This tutorial aims at explaining how to perform 3D Object Recognition based on

the pcl_recognition module.

• implicit_shape_model

Title: Implicit Shape Model

Author: *Sergey Ushakov* Compatibility: > PCL 1.7

In this tutorial we will learn how the Implicit Shape Model algorithm works and how to use it for finding objects centers.

• global_hypothesis_verification

Title: Hypothesis Verification for 3D Object Recognition

Author: Daniele De Gregorio, Federico Tombari

Compatibility: > PCL 1.7

This tutorial aims at explaining how to do 3D object recognition in clutter by verifying model hypotheses in cluttered and heavily occluded 3D scenes.

ELEVEN

REGISTRATION

• registration_api

Title: The PCL Registration API

Author: Dirk Holz, Radu B. Rusu, Jochen Sprickerhof

Compatibility: > PCL 1.5

In this document, we describe the point cloud registration API and its modules: the estimation and rejection of point correspondences, and the estimation of rigid transformations.

• iterative_closest_point

Title: How to use iterative closest point algorithm

Author: *Gabe O'Leary* Compatibility: > PCL 1.0

This tutorial gives an example of how to use the iterative closest point algorithm to see if one PointCloud is just a rigid transformation of another PointCloud.

• pairwise_incremental_registration

Title: How to incrementally register pairs of clouds

Author: *Raphael Favier* Compatibility: > PCL 1.4

This document demonstrates using the Iterative Closest Point algorithm in order to incremen-

tally register a series of point clouds two by two.

• interactive_icp

Title: **Interactive ICP**Author: *Victor Lamoine*Compatibility: > PCL 1.5

This tutorial will teach you how to build an interactive ICP program

• normal_distributions_transform

Title: How to use the Normal Distributions Transform algorithm

Author: *Brian Okorn* Compatibility: > PCL 1.6

This document demonstrates using the Normal Distributions Transform algorithm to register

two large point clouds.

• in_hand_scanner

Title: How to use the In-hand scanner for small objects

Author: *Martin Saelzle*Compatibility: >= PCL 1.7

This document shows how to use the In-hand scanner applications to obtain colored models of small objects with RGB-D cameras.

• alignment_prerejective

Title: Robust pose estimation of rigid objects

Author: *Anders Glent Buch* Compatibility: >= PCL 1.7

In this tutorial, we show how to find the alignment pose of a rigid object in a scene with clutter and occlusions.

TWELVE

SAMPLE CONSENSUS

• random_sample_consensus

Title: How to use Random Sample Consensus model

Author: *Gabe O'Leary* Compatibility: > PCL 1.0

In this tutorial we learn how to use a RandomSampleConsensus with a plane model

to obtain the cloud fitting to this model.

THIRTEEN

SEGMENTATION

• planar_segmentation

Title: Plane model segmentation

Author: *Radu B. Rusu*Compatibility: > PCL 1.3

In this tutorial, we will learn how to segment arbitrary plane models from a given

point cloud dataset.

• cylinder_segmentation

Title: Cylinder model segmentation

Author: *Radu B. Rusu* Compatibility: > PCL 1.3

In this tutorial, we will learn how to segment arbitrary cylindrical models from

a given point cloud dataset.

• cluster_extraction

Title: Euclidean Cluster Extraction

Author: *Serkan Tuerker* Compatibility: > PCL 1.3

In this tutorial we will learn how to extract Euclidean clusters with the

pcl::EuclideanClusterExtraction class.

• region_growing_segmentation

Title: Region Growing Segmentation

Author: *Sergey Ushakov* Compatibility: >= PCL 1.7

In this tutorial we will learn how to use region growing segmentation algo-

rithm.

• region_growing_rgb_segmentation

Title: Color-based Region Growing Segmentation

Author: *Sergey Ushakov* Compatibility: >= PCL 1.7

In this tutorial we will learn how to use color-based region growing segmentation

algorithm.

• min_cut_segmentation

Title: Min-Cut Based Segmentation

Author: *Sergey Ushakov* Compatibility: >= PCL 1.7

In this tutorial we will learn how to use min-cut based segmentation algorithm.

• conditional_euclidean_clustering

Title: Conditional Euclidean Clustering

Author: *Frits Florentinus* Compatibility: >= PCL 1.7

This tutorial describes how to use the Conditional Euclidean Clustering class in PCL: A segmentation algorithm that clusters points based on Euclidean distance and a user-

customizable condition that needs to hold.

• don_segmentation

Title: Difference of Normals Based Segmentation

Author: *Yani Ioannou* Compatibility: >= PCL 1.7

In this tutorial we will learn how to use the difference of normals feature for seg-

mentation.

• supervoxel_clustering

Title: Supervoxel Clustering

Author: *Jeremie Papon* Compatibility: >= PCL 1.8

In this tutorial, we show to break a pointcloud into the mid-level supervoxel

representation.

• progressive_morphological_filtering

Title: Progressive Morphological Filtering

Author: *Brad Chambers*Compatibility: >= PCL 1.8

In this tutorial, we show how to segment a point cloud into ground and non-ground re-

turns.

• model_outlier_removal

Title: Model outlier removal

Author: Timo Häckel

Compatibility: >= PCL 1.7.2

This tutorial describes how to extract points from a point cloud using

SAC models

FOURTEEN

SURFACE

• moving_least_squares

Title: Smoothing and normal estimation based on polynomial reconstruction

Author: Zoltan-Csaba Marton, Alexandru E. Ichim

Compatibility: > PCL 1.6

In this tutorial, we will learn how to construct and run a Moving Least Squares (MLS)

algorithm to obtain smoothed XYZ coordinates and normals.

• hull_2d

Title: Construct a concave or convex hull polygon for a plane model

Author: Gabe O'Leary, Radu B. Rusu

Compatibility: > PCL 1.0

In this tutorial we will learn how to calculate a simple 2D concave or convex hull polygon for a set of points supported by a plane.

greedy_triangulation

Title: Fast triangulation of unordered point clouds

Author: *Zoltan-Csaba Marton* Compatibility: > PCL 1.0

In this tutorial we will learn how to run a greedy triangulation algorithm on a Point-Cloud with normals to obtain a triangle mesh based on projections of the local neighborhood.

• bspline_fitting

Title: Fitting trimmed B-splines to unordered point clouds

Author: *Thomas Mörwald* Compatibility: > PCL 1.7

In this tutorial we will learn how to reconstruct a smooth surface from an unordered

point-cloud by fitting trimmed B-splines.

FIFTEEN

VISUALIZATION

• cloud_viewer

Title: Visualizing Point Clouds

Author: *Ethan Rublee* Compatibility: > PCL 1.0

This tutorial demonstrates how to use the pcl visualization tools.

• range_image_visualization

Title: Visualizing Range Images

Author: *Bastian Steder* Compatibility: > PCL 1.3

This tutorial demonstrates how to use the pcl visualization tools for range images.

• pcl_visualizer

Title: **PCLVisualizer**Author: *Geoffrey Biggs*Compatibility: > PCL 1.3

This tutorial demonstrates how to use the PCLVisualizer class for powerful visu-

alisation of point clouds and related data.

• pcl_plotter

Title: PCLPlotter

Author: *Kripasindhu Sarkar* Compatibility: > PCL 1.7

This tutorial demonstrates how to use the PCLPlotter class for powerful visualisation

of plots, charts and histograms of raw data and explicit functions.

· visualization

Title: PCL Visualization overview

Author: *Radu B. Rusu* Compatibility: >= PCL 1.0

This tutorial will give an overview on the usage of the PCL visualization tools.

· qt_visualizer

Title: Create a PCL visualizer in Qt with cmake

Author: *Victor Lamoine* Compatibility: > PCL 1.5

This tutorial shows you how to create a PCL visualizer within a Qt application.

• qt_colorize_cloud

Title: Create a PCL visualizer in Qt to colorize clouds

Author: *Victor Lamoine* Compatibility: > PCL 1.5

This tutorial shows you how to color point clouds within a Qt application.

SIXTEEN

APPLICATIONS

• template_alignment

Title: Aligning object templates to a point cloud

Author: *Michael Dixon* Compatibility: > PCL 1.3

This tutorial gives an example of how some of the tools covered in the previous tutorials can be combined to solve a higher level problem — aligning a previously captured model of an object to some newly captured data.

• vfh_recognition

Title: Cluster Recognition and 6DOF Pose Estimation using VFH descriptors

Author: *Radu B. Rusu* Compatibility: > PCL 0.8

In this tutorial we show how the Viewpoint Feature Histogram (VFH) descriptor can be used to recognize similar clusters in terms of their geometry.

• mobile_streaming

Title: Point Cloud Streaming to Mobile Devices with Real-time Visualization

Author: *Pat Marion* Compatibility: > PCL 1.3

This tutorial describes how to send point cloud data over the network from a desktop server to a client running on a mobile device.

• ground_based_rgbd_people_detection

Title: Detecting people on a ground plane with RGB-D data

Author: *Matteo Munaro* Compatibility: >= PCL 1.7

This tutorial presents a method for detecting people on a ground plane with RGB-D

data.

SEVENTEEN

GPU

• gpu_install

Title: **GPU Installation**

Author: Koen Buys

Compatibility: PCL git master

This tutorial explains how to configure PCL to use with a Nvidia GPU

• using_kinfu_large_scale

Title: Using Kinfu Large Scale to generate a textured mesh

Author: Francisco Heredia and Raphael Favier

Compatibility: PCL git master

This tutorial demonstrates how to use KinFu Large Scale to produce a mesh from a room, and apply texture information in post-processing for a more appealing visual result.

• gpu_people

Title: People Detection

Author: Koen Buys

Compatibility: PCL git master

This tutorial presents a method for people and pose detection.