Point Cloud Library

Release 0.0

unknown

Jan 03, 2024

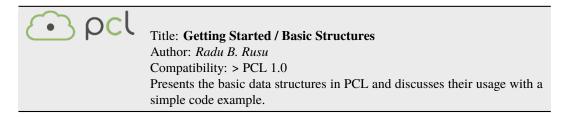
CONTENTS

1	Basic Usage	3
2	Advanced Usage	7
3	Features	9
4	Filtering	13
5	I/O	15
6	Keypoints	19
7	KdTree	21
8	Octree	23
9	Range Images	25
10	Recognition	27
11	Registration	29
12	Sample Consensus	31
13	Segmentation	33
14	Surface	37
15	Visualization	39
16	Applications	41
17	GPU	43

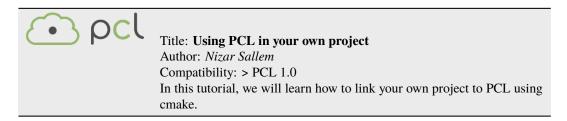
The following links describe a set of basic PCL tutorials. Please note that their source codes may already be provided as part of the PCL regular releases, so check there before you start copy & pasting the code. The list of tutorials below is automatically generated from reST files located in our git repository.

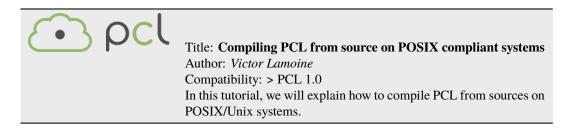

Note: Before you start reading, please make sure that you go through the higher-level overview documentation at http://www.pointclouds.org/documentation/, under **Getting Started**. Thank you.

As always, we would be happy to hear your comments and receive your contributions on any tutorial.

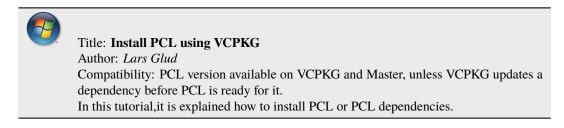

ONE

BASIC USAGE


• walkthrough


basic_structures

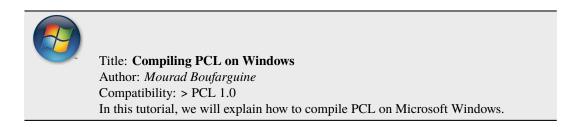
• using_pcl_pcl_config


• compiling_pcl_posix

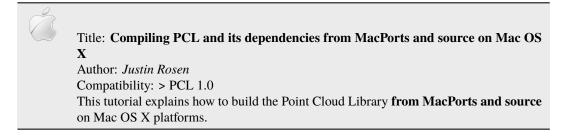
• building_pcl

Title: Explaining PCL's cmake options
Author: Nizar Sallem
Compatibility: > PCL 1.0
In this tutorial, we will explain the basic PCL cmake options, and ways to tweak
them to fit your project.

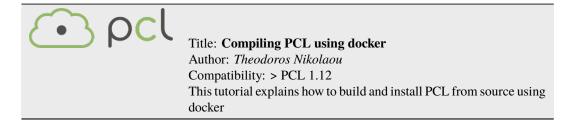
• pcl_vcpkg_windows

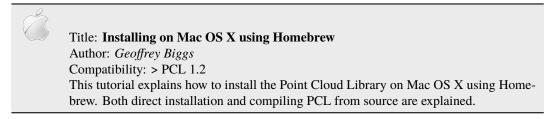


• compiling_pcl_dependencies_windows



Title: **Compiling PCL's dependencies from source on Windows** Authors: *Alessio Placitelli* and *Mourad Boufarguine* Compatibility: > PCL 1.0 In this tutorial, we will explain how to compile PCL's 3rd party dependencies from source on Microsoft Windows.


compiling_pcl_windows


• compiling_pcl_macosx

compiling_pcl_docker

installing_homebrew

• using_pcl_with_eclipse

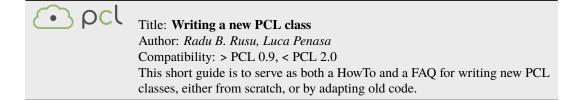
generate_local_doc

💽 pcl	Title: Generate a local documentation for PCL Author: Victor Lamoine
	Compatibility: PCL > 1.0 This tutorial shows you how to generate and use a local documentation for PCL.

• matrix_transform

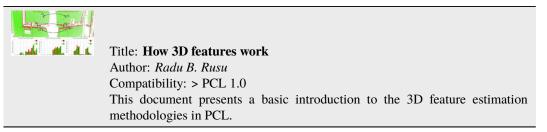
Title: Using matrixes to transform a point cloud Author: *Victor Lamoine* Compatibility: > PCL 1.5 This tutorial shows you how to transform a point cloud using a matrix.

TWO


ADVANCED USAGE

• adding_custom_ptype

Title: Adding your own custom PointT point type Author: *Radu B. Rusu* Compatibility: > PCL 0.9, < PCL 2.0 This document explains what templated point types are in PCL, why do they exist, and how to create and use your own *PointT* point type.


• writing_new_classes

THREE

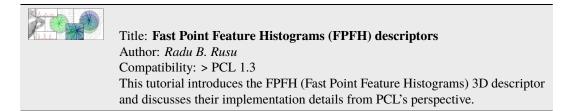
FEATURES

how_3d_features_work

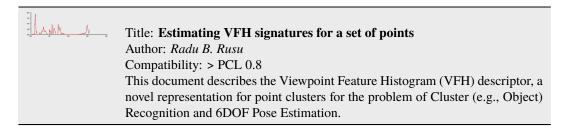
normal_estimation

Title: **Estimating Surface Normals in a PointCloud** Author: *Radu B. Rusu* Compatibility: > PCL 1.0 This tutorial discusses the theoretical and implementation details of the surface normal estimation module in PCL.

• normal_estimation_using_integral_images


Title: **Normal Estimation Using Integral Images** Author: *Stefan Holzer* Compatibility: > PCL 1.0 In this tutorial we will learn how to compute normals for an organized point cloud using integral images.

• pfh_estimation

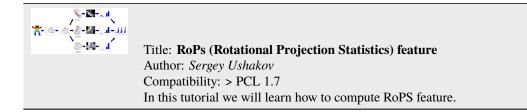


Title: **Point Feature Histograms (PFH) descriptors** Author: *Radu B. Rusu* Compatibility: > PCL 1.0 This tutorial introduces a family of 3D feature descriptors called PFH (Point Feature Histograms) and discusses their implementation details from PCL's perspective.


• fpfh_estimation

• vfh_estimation

narf_feature_extraction



• moment_of_inertia

Title: **Moment of inertia and eccentricity based descriptors** Author: *Sergey Ushakov* Compatibility: > PCL 1.7 In this tutorial we will learn how to compute moment of inertia and eccentricity of the cloud. In addition to this we will learn how to extract AABB and OBB.

• rops_feature

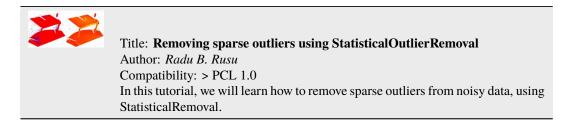
• gasd_estimation

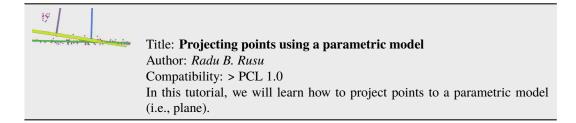


Title: **Globally Aligned Spatial Distribution (GASD) descriptors** Author: *Joao Paulo Lima* Compatibility: >= PCL 1.9 This document describes the Globally Aligned Spatial Distribution (GASD) global descriptor to be used for efficient object recognition and pose estimation.

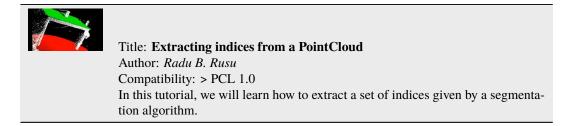
FOUR

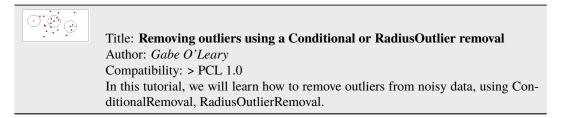
FILTERING


• passthrough

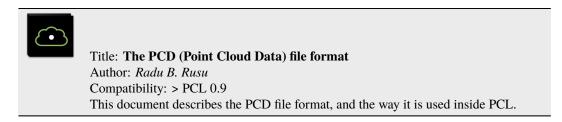

• voxelgrid

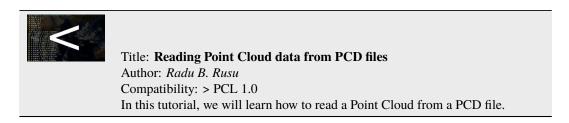
Title: Downsampling a PointCloud using a VoxelGrid filter Author: <i>Radu B. Rusu</i>
Compatibility: > PCL 1.0 In this tutorial, we will learn how to downsample (i.e., reduce the number of points) a Point Cloud.


• statistical_outlier_removal

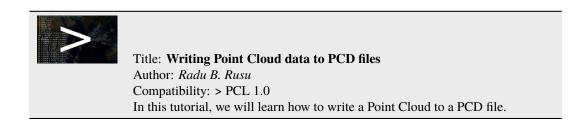

• project_inliers

• extract_indices

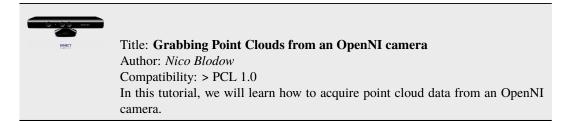

remove_outliers

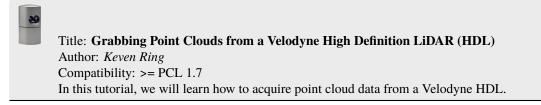

FIVE

I/O

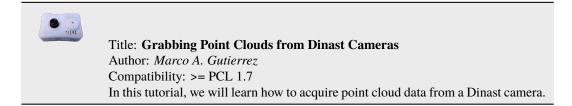

• pcd_file_format

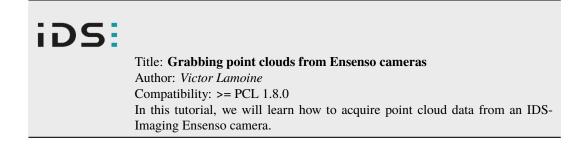
reading_pcd

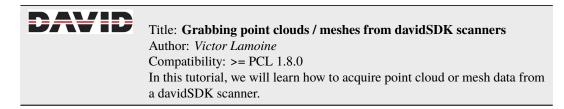

• writing_pcd


concatenate_clouds

Title: **Concatenate the fields or points of two Point Clouds** Author: *Gabe O'Leary / Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to concatenate both the fields and the point data of two Point Clouds. When concatenating fields, one PointClouds contains only *XYZ* data, and the other contains *Surface Normal* information.


openni_grabber


• hdl_grabber


• dinast_grabber

ensenso_cameras

• david_sdk

• depth_sense_grabber

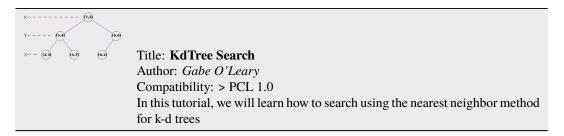
1

Title: Grabbing point clouds from DepthSense cameras Author: <i>Sergey Alexandrov</i> Compatibility: >= PCL 1.8.0 In this tutorial we will learn how to setup and use DepthSense cameras within PCL on hoth Linux and Windows platforms
both Linux and Windows platforms.

SIX

KEYPOINTS

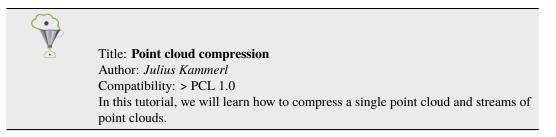
• narf_keypoint_extraction

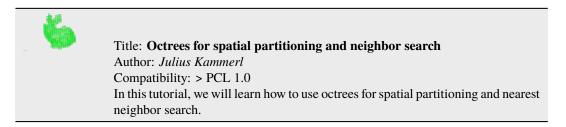


Title: **How to extract NARF keypoints from a range image** Author: *Bastian Steder* Compatibility: > 1.3 In this tutorial, we will learn how to extract NARF keypoints from a range image.

SEVEN

KDTREE


• kdtree_search

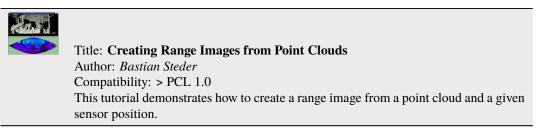

EIGHT

OCTREE

• octree_compression

octree_search

octree_change_detection



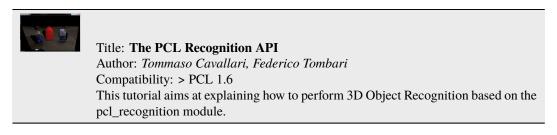
Title: **Spatial change detection on unorganized point cloud data** Author: *Julius Kammerl* Compatibility: > PCL 1.0 In this tutorial, we will learn how to use octrees for detecting spatial changes within point clouds.

NINE

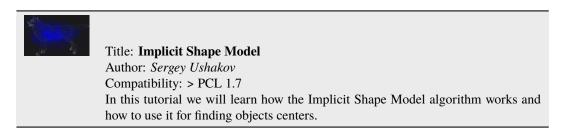
RANGE IMAGES

• range_image_creation

• range_image_border_extraction



Title: **Extracting borders from Range Images** Author: *Bastian Steder* Compatibility: > PCL 1.3 This tutorial demonstrates how to extract borders (traversals from foreground to background) from a range image.

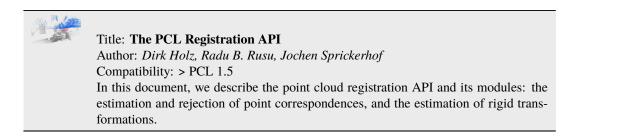

TEN

RECOGNITION

correspondence_grouping

implicit_shape_model

global_hypothesis_verification

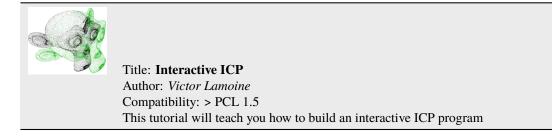


Title: **Hypothesis Verification for 3D Object Recognition** Author: *Daniele De Gregorio, Federico Tombari* Compatibility: > PCL 1.7 This tutorial aims at explaining how to do 3D object recognition in clutter by verifying model hypotheses in cluttered and heavily occluded 3D scenes.

ELEVEN

REGISTRATION

• registration_api


iterative_closest_point

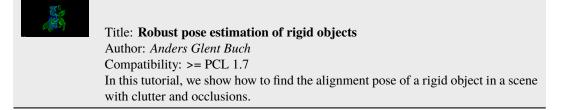
Title: **How to use iterative closest point algorithm** Author: *Gabe O'Leary* Compatibility: > PCL 1.0 This tutorial gives an example of how to use the iterative closest point algorithm to see if one PointCloud is just a rigid transformation of another PointCloud.

• pairwise_incremental_registration

Title: **How to incrementally register pairs of clouds** Author: *Raphael Favier* Compatibility: > PCL 1.4 This document demonstrates using the Iterative Closest Point algorithm in order to incrementally register a series of point clouds two by two.

• interactive_icp

normal_distributions_transform


Title: **How to use the Normal Distributions Transform algorithm** Author: *Brian Okorn* Compatibility: > PCL 1.6 This document demonstrates using the Normal Distributions Transform algorithm to register two large point clouds.

• in_hand_scanner

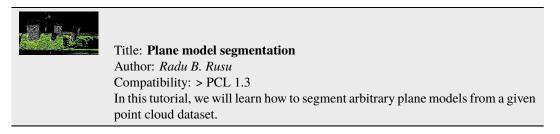
Title: **How to use the In-hand scanner for small objects** Author: *Martin Saelzle* Compatibility: >= PCL 1.7 This document shows how to use the In-hand scanner applications to obtain colored models of small objects with RGB-D cameras.

• alignment_prerejective

TWELVE

SAMPLE CONSENSUS

• random_sample_consensus

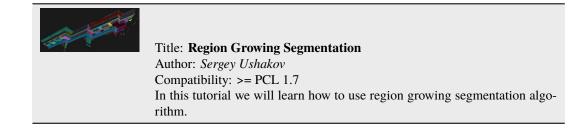


Title: **How to use Random Sample Consensus model** Author: *Gabe O'Leary* Compatibility: > PCL 1.0 In this tutorial we learn how to use a RandomSampleConsensus with a plane model to obtain the cloud fitting to this model.

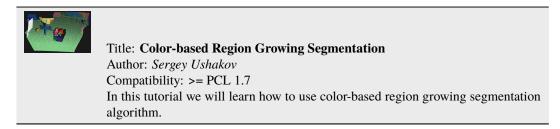
THIRTEEN

SEGMENTATION

• planar_segmentation


cylinder_segmentation

Title: Cylinder model segmentation Author: <i>Radu B. Rusu</i>
Compatibility: > PCL 1.3 In this tutorial, we will learn how to segment arbitrary cylindrical models from a given point cloud dataset.


• cluster_extraction

A P	Title: Euclidean Cluster Extraction Author: <i>Serkan Tuerker</i> Compatibility: > PCL 1.3
	In this tutorial we will learn how to extract Euclidean clusters with the pcl::EuclideanClusterExtraction class.

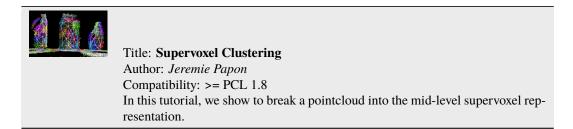
region_growing_segmentation

region_growing_rgb_segmentation

• min_cut_segmentation

Title: **Min-Cut Based Segmentation** Author: *Sergey Ushakov* Compatibility: >= PCL 1.7 In this tutorial we will learn how to use min-cut based segmentation algorithm.

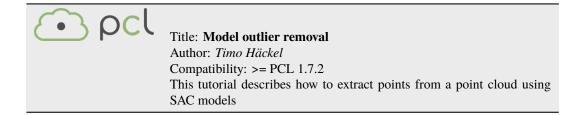
conditional_euclidean_clustering


Title: **Conditional Euclidean Clustering** Author: *Frits Florentinus* Compatibility: >= PCL 1.7 This tutorial describes how to use the Conditional Euclidean Clustering class in PCL: A segmentation algorithm that clusters points based on Euclidean distance and a usercustomizable condition that needs to hold.

• don_segmentation

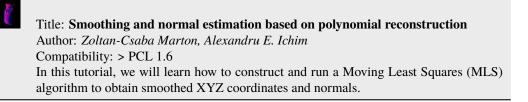
Title: Difference of Normals Based Segmentation
Author: Yani Ioannou
Compatibility: >= PCL 1.7
In this tutorial we will learn how to use the difference of normals feature for segmentation.

• supervoxel_clustering



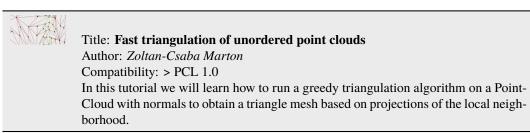
progressive_morphological_filtering

Title: **Progressive Morphological Filtering** Author: *Brad Chambers* Compatibility: >= PCL 1.8 In this tutorial, we show how to segment a point cloud into ground and non-ground returns.


model_outlier_removal

FOURTEEN

SURFACE

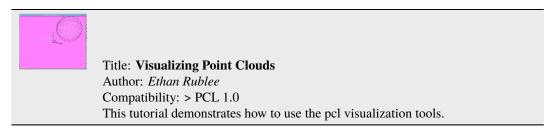

• moving_least_squares

• hull_2d

Title: Construct a concave or convex hull polygon for a plane model
Author: Gabe O'Leary, Radu B. Rusu
Compatibility: > PCL 1.0
In this tutorial we will learn how to calculate a simple 2D concave or convex hull
polygon for a set of points supported by a plane.

• greedy_triangulation

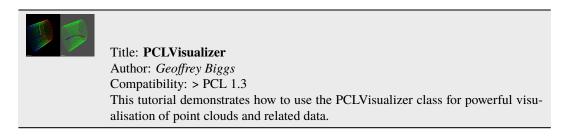
• bspline_fitting

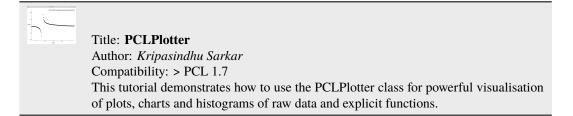


Title: **Fitting trimmed B-splines to unordered point clouds** Author: *Thomas Mörwald* Compatibility: > PCL 1.7 In this tutorial we will learn how to reconstruct a smooth surface from an unordered point-cloud by fitting trimmed B-splines.

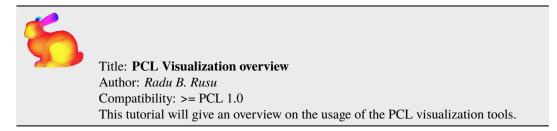
FIFTEEN

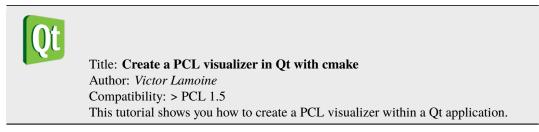
VISUALIZATION

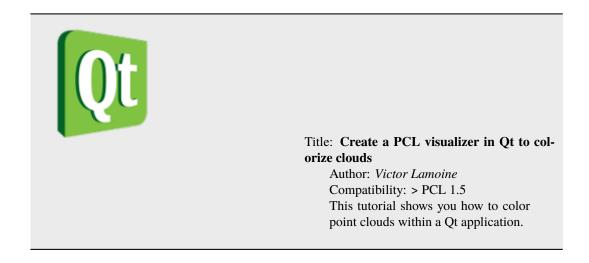

cloud_viewer


• range_image_visualization

Title: Visualizing Range Images Author: Bastian Steder Compatibility: > PCL 1.3 This tutorial demonstrates how to use the pcl visualization tools for range image	lization tools for range images.
---	----------------------------------


• pcl_visualizer

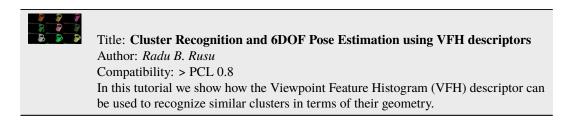

• pcl_plotter


visualization

• qt_visualizer

qt_colorize_cloud

SIXTEEN


APPLICATIONS

• template_alignment

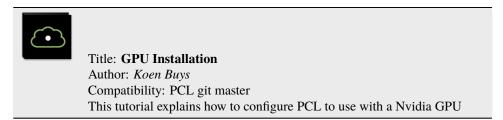
Title: Aligning object templates to a point cloud Author: *Michael Dixon* Compatibility: > PCL 1.3 This tutorial gives an example of how some of the tools covered in the previous tutorials can be combined to solve a higher level problem — aligning a previously captured model of an object to some newly captured data.

vfh_recognition

• mobile_streaming

Title: **Point Cloud Streaming to Mobile Devices with Real-time Visualization** Author: *Pat Marion* Compatibility: > PCL 1.3 This tutorial describes how to send point cloud data over the network from a desktop server to a client running on a mobile device.

ground_based_rgbd_people_detection

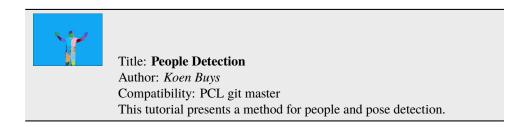


Title: **Detecting people on a ground plane with RGB-D data** Author: *Matteo Munaro* Compatibility: >= PCL 1.7 This tutorial presents a method for detecting people on a ground plane with RGB-D data.

SEVENTEEN

GPU

• gpu_install



• using_kinfu_large_scale

Title: Using Kinfu Large Scale to generate a textured mesh
Author: Francisco Heredia and Raphael Favier
Compatibility: PCL git master
This tutorial demonstrates how to use KinFu Large Scale to pro
from a room, and apply texture information in post-processing

npatibility: PCL git master s tutorial demonstrates how to use KinFu Large Scale to produce a mesh n a room, and apply texture information in post-processing for a more appealing visual result.

• gpu_people

