Point Cloud Library Release 0.0 unknown # **CONTENTS** | 1 | Basic Usage | 3 | |----|------------------|----| | 2 | Advanced Usage | 7 | | 3 | Features | 9 | | 4 | Filtering | 13 | | 5 | I/O | 15 | | 6 | Keypoints | 19 | | 7 | KdTree | 21 | | 8 | Octree | 23 | | 9 | Range Images | 25 | | 10 | Recognition | 27 | | 11 | Registration | 29 | | 12 | Sample Consensus | 31 | | 13 | Segmentation | 33 | | 14 | Surface | 37 | | 15 | Visualization | 39 | | 16 | Applications | 41 | | 17 | GPU | 43 | The following links describe a set of basic PCL tutorials. Please note that their source codes may already be provided as part of the PCL regular releases, so check there before you start copy & pasting the code. The list of tutorials below is automatically generated from reST files located in our git repository. **Note:** Before you start reading, please make sure that you go through the higher-level overview documentation at http://www.pointclouds.org/documentation/, under **Getting Started**. Thank you. As always, we would be happy to hear your comments and receive your contributions on any tutorial. CONTENTS 1 2 CONTENTS ### **ONE** ### **BASIC USAGE** #### · walkthrough Title: PCL Functionality Walkthrough Author: *Razvan G. Mihalyi* Compatibility: > PCL 1.6 Takes the reader through all of the PCL modules and offers basic explanations on their functionalities. • basic_structures Title: Getting Started / Basic Structures Author: *Radu B. Rusu* Compatibility: > PCL 1.0 Presents the basic data structures in PCL and discusses their usage with a simple code example. • using_pcl_pcl_config Title: Using PCL in your own project Author: *Nizar Sallem* Compatibility: > PCL 1.0 In this tutorial, we will learn how to link your own project to PCL using cmake. • compiling_pcl_posix Title: Compiling PCL from source on POSIX compliant systems Author: *Victor Lamoine* Compatibility: > PCL 1.0 In this tutorial, we will explain how to compile PCL from sources on POSIX/Unix systems. • building_pcl Title: Explaining PCL's cmake options Author: *Nizar Sallem* Compatibility: > PCL 1.0 In this tutorial, we will explain the basic PCL cmake options, and ways to tweak them to fit your project. • pcl_vcpkg_windows Title: Install PCL using VCPKG Author: Lars Glud Compatibility: PCL version available on VCPKG and Master, unless VCPKG updates a dependency before PCL is ready for it. In this tutorial, it is explained how to install PCL or PCL dependencies. • compiling_pcl_dependencies_windows Title: Compiling PCL's dependencies from source on Windows Authors: Alessio Placitelli and Mourad Boufarguine Compatibility: > PCL 1.0 In this tutorial, we will explain how to compile PCL's 3rd party dependencies from source on Microsoft Windows. • compiling_pcl_windows Title: Compiling PCL on Windows Author: *Mourad Boufarguine* Compatibility: > PCL 1.0 In this tutorial, we will explain how to compile PCL on Microsoft Windows. • compiling_pcl_macosx Title: Compiling PCL and its dependencies from MacPorts and source on Mac OS $\mathbf X$ Λ Author: *Justin Rosen* Compatibility: > PCL 1.0 This tutorial explains how to build the Point Cloud Library **from MacPorts and source** on Mac OS X platforms. • compiling_pcl_docker Title: Compiling PCL using docker Author: *Theodoros Nikolaou* Compatibility: > PCL 1.12 This tutorial explains how to build and install PCL from source using docker • installing_homebrew Title: Installing on Mac OS X using Homebrew Author: *Geoffrey Biggs* Compatibility: > PCL 1.2 This tutorial explains how to install the Point Cloud Library on Mac OS X using Homebrew. Both direct installation and compiling PCL from source are explained. • using_pcl_with_eclipse Title: Using Eclipse as your PCL editor Author: Koen Buys Compatibility: PCL git master This tutorial shows you how to get your PCL as a project in Eclipse. • generate_local_doc Title: Generate a local documentation for PCL Author: *Victor Lamoine* Compatibility: PCL > 1.0 This tutorial shows you how to generate and use a local documentation for PCL. • matrix_transform Title: Using matrixes to transform a point cloud Author: *Victor Lamoine* Compatibility: > PCL 1.5 This tutorial shows you how to transform a point cloud using a matrix. # **TWO** ### **ADVANCED USAGE** • adding_custom_ptype Title: Adding your own custom PointT point type Author: Radu B. Rusu Compatibility: > PCL 0.9, < PCL 2.0 This document explains what templated point types are in PCL, why do they exist, and how to create and use your own *PointT* point type. • writing_new_classes ocl Title: Writing a new PCL class Author: *Radu B. Rusu, Luca Penasa* Compatibility: > PCL 0.9, < PCL 2.0 This short guide is to serve as both a HowTo and a FAQ for writing new PCL classes, either from scratch, or by adapting old code. ### **THREE** ### **FEATURES** • how_3d_features_work Title: How 3D features work Author: Radu B. Rusu Compatibility: > PCL 1.0 This document presents a basic introduction to the 3D feature estimation methodologies in PCL. • normal_estimation Title: Estimating Surface Normals in a PointCloud Author: Radu B. Rusu Compatibility: > PCL 1.0 This tutorial discusses the theoretical and implementation details of the surface normal estimation module in PCL. • normal_estimation_using_integral_images Title: Normal Estimation Using Integral Images Author: Stefan Holzer Compatibility: > PCL 1.0 In this tutorial we will learn how to compute normals for an organized point cloud using integral images. • pfh_estimation Title: Point Feature Histograms (PFH) descriptors Author: *Radu B. Rusu* Compatibility: > PCL 1.0 This tutorial introduces a family of 3D feature descriptors called PFH (Point Feature Histograms) and discusses their implementation details from PCL's perspective. #### · fpfh estimation Title: Fast Point Feature Histograms (FPFH) descriptors Author: *Radu B. Rusu* Compatibility: > PCL 1.3 This tutorial introduces the FPFH (Fast Point Feature Histograms) 3D descriptor and discusses their implementation details from PCL's perspective. #### · vfh_estimation Title: Estimating VFH signatures for a set of points Author: *Radu B. Rusu* Compatibility: > PCL 0.8 This document describes the Viewpoint Feature Histogram (VFH) descriptor, a novel representation for point clusters for the problem of Cluster (e.g., Object) Recognition and 6DOF Pose Estimation. #### • narf feature extraction Title: How to extract NARF features from a range image Author: *Bastian Steder* Compatibility: > 1.3 In this tutorial, we will learn how to extract NARF features from a range image. #### • moment_of_inertia Title: Moment of inertia and eccentricity based descriptors Author: *Sergey Ushakov* Compatibility: > PCL 1.7 In this tutorial we will learn how to compute moment of inertia and eccentricity of the cloud. In addition to this we will learn how to extract AABB and OBB. #### • rops_feature 10 Chapter 3. Features Title: RoPs (Rotational Projection Statistics) feature Author: *Sergey Ushakov* Compatibility: > PCL 1.7 In this tutorial we will learn how to compute RoPS feature. • gasd_estimation Title: Globally Aligned Spatial Distribution (GASD) descriptors Author: *Joao Paulo Lima* Compatibility: >= PCL 1.9 This document describes the Globally Aligned Spatial Distribution (GASD) global de- scriptor to be used for efficient object recognition and pose estimation. 12 Chapter 3. Features ### **FOUR** ### **FILTERING** #### · passthrough Title: Filtering a PointCloud using a PassThrough filter Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to remove points whose values fall in- side/outside a user given interval along a specified dimension. #### • voxelgrid Title: Downsampling a PointCloud using a VoxelGrid filter Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to downsample (i.e., reduce the number of points) a Point Cloud. #### • statistical_outlier_removal Title: Removing sparse outliers using StatisticalOutlierRemoval Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to remove sparse outliers from noisy data, using StatisticalRemoval. · project_inliers Title: Projecting points using a parametric model Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to project points to a parametric model (i.e., plane). #### • extract_indices Title: Extracting indices from a PointCloud Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to extract a set of indices given by a segmenta- tion algorithm. #### • remove_outliers Title: Removing outliers using a Conditional or RadiusOutlier removal Author: *Gabe O'Leary* Compatibility: > PCL 1.0 In this tutorial, we will learn how to remove outliers from noisy data, using Con- $ditional Removal,\,Radius Outlier Removal.$ # **FIVE** I/O • pcd_file_format Title: The PCD (Point Cloud Data) file format Author: *Radu B. Rusu* Compatibility: > PCL 0.9 This document describes the PCD file format, and the way it is used inside PCL. • reading_pcd Title: Reading Point Cloud data from PCD files Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to read a Point Cloud from a PCD file. • writing_pcd Title: Writing Point Cloud data to PCD files Author: *Radu B. Rusu* Compatibility: > PCL 1.0 In this tutorial, we will learn how to write a Point Cloud to a PCD file. • concatenate_clouds Title: Concatenate the fields or points of two Point Clouds Author: Gabe O'Leary / Radu B. Rusu Compatibility: > PCL 1.0 In this tutorial, we will learn how to concatenate both the fields and the point data of two Point Clouds. When concatenating fields, one PointClouds contains only *XYZ* data, and the other contains *Surface Normal* information. · openni_grabber Title: Grabbing Point Clouds from an OpenNI camera Author: *Nico Blodow* Compatibility: > PCL 1.0 In this tutorial, we will learn how to acquire point cloud data from an OpenNI camera. · hdl grabber Title: Grabbing Point Clouds from a Velodyne High Definition LiDAR (HDL) Author: *Keven Ring*Compatibility: >= PCL 1.7 In this tutorial, we will learn how to acquire point cloud data from a Velodyne HDL. · dinast_grabber **Title: Grabbing Point Clouds from Dinast Cameras** Author: *Marco A. Gutierrez* Compatibility: >= PCL 1.7 In this tutorial, we will learn how to acquire point cloud data from a Dinast camera. • ensenso_cameras Title: Grabbing point clouds from Ensenso cameras Author: *Victor Lamoine* Compatibility: >= PCL 1.8.0 In this tutorial, we will learn how to acquire point cloud data from an IDS- Imaging Ensenso camera. 16 Chapter 5. I/O #### • david_sdk Title: Grabbing point clouds / meshes from davidSDK scanners Author: *Victor Lamoine* Compatibility: >= PCL 1.8.0 In this tutorial, we will learn how to acquire point cloud or mesh data from a davidSDK scanner. • depth_sense_grabber Title: Grabbing point clouds from DepthSense cameras Author: *Sergey Alexandrov* Compatibility: >= PCL 1.8.0 In this tutorial we will learn how to setup and use DepthSense cameras within PCL on $\,$ both Linux and Windows platforms. 18 Chapter 5. I/O # SIX # **KEYPOINTS** • narf_keypoint_extraction Title: How to extract NARF keypoints from a range image Author: *Bastian Steder* Compatibility: > 1.3 In this tutorial, we will learn how to extract NARF keypoints from a range image. # **SEVEN** # **KDTREE** ### • kdtree_search 22 Chapter 7. KdTree # **EIGHT** ### **OCTREE** • octree_compression Title: Point cloud compression Author: *Julius Kammerl* Compatibility: > PCL 1.0 In this tutorial, we will learn how to compress a single point cloud and streams of point clouds. • octree_search Title: Octrees for spatial partitioning and neighbor search Author: *Julius Kammerl* Compatibility: > PCL 1.0 In this tutorial, we will learn how to use octrees for spatial partitioning and nearest neighbor search. • octree_change_detection Title: Spatial change detection on unorganized point cloud data Author: *Julius Kammerl* Compatibility: > PCL 1.0 In this tutorial, we will learn how to use octrees for detecting spatial changes within point clouds. 24 Chapter 8. Octree # **NINE** # **RANGE IMAGES** • range_image_creation Title: Creating Range Images from Point Clouds Author: *Bastian Steder* Compatibility: > PCL 1.0 This tutorial demonstrates how to create a range image from a point cloud and a given $% \left\{ 1,2,...,n\right\}$ sensor position. • range_image_border_extraction Title: Extracting borders from Range Images Author: *Bastian Steder* Compatibility: > PCL 1.3 This tutorial demonstrates how to extract borders (traversals from foreground to back- ground) from a range image. ### **TEN** ### RECOGNITION • correspondence_grouping Title: The PCL Recognition API Author: Tommaso Cavallari, Federico Tombari Compatibility: > PCL 1.6 This tutorial aims at explaining how to perform 3D Object Recognition based on the pcl_recognition module. • implicit_shape_model Title: Implicit Shape Model Author: *Sergey Ushakov* Compatibility: > PCL 1.7 In this tutorial we will learn how the Implicit Shape Model algorithm works and how to use it for finding objects centers. • global_hypothesis_verification Title: Hypothesis Verification for 3D Object Recognition Author: Daniele De Gregorio, Federico Tombari Compatibility: > PCL 1.7 This tutorial aims at explaining how to do 3D object recognition in clutter by verifying model hypotheses in cluttered and heavily occluded 3D scenes. ### **ELEVEN** ### **REGISTRATION** · registration_api Title: The PCL Registration API Author: Dirk Holz, Radu B. Rusu, Jochen Sprickerhof Compatibility: > PCL 1.5 In this document, we describe the point cloud registration API and its modules: the estimation and rejection of point correspondences, and the estimation of rigid transformations. • iterative_closest_point Title: How to use iterative closest point algorithm Author: *Gabe O'Leary* Compatibility: > PCL 1.0 This tutorial gives an example of how to use the iterative closest point algorithm to see if one PointCloud is just a rigid transformation of another PointCloud. • pairwise incremental registration Title: How to incrementally register pairs of clouds Author: *Raphael Favier* Compatibility: > PCL 1.4 This document demonstrates using the Iterative Closest Point algorithm in order to incremen- tally register a series of point clouds two by two. • interactive_icp Title: **Interactive ICP**Author: *Victor Lamoine*Compatibility: > PCL 1.5 This tutorial will teach you how to build an interactive ICP program • normal_distributions_transform Title: How to use the Normal Distributions Transform algorithm Author: *Brian Okorn* Compatibility: > PCL 1.6 This document demonstrates using the Normal Distributions Transform algorithm to register two large point clouds. • in_hand_scanner Title: How to use the In-hand scanner for small objects Author: *Martin Saelzle* Compatibility: >= PCL 1.7 This document shows how to use the In-hand scanner applications to obtain colored models of small objects with RGB-D cameras. • alignment_prerejective Title: Robust pose estimation of rigid objects Author: *Anders Glent Buch* Compatibility: >= PCL 1.7 In this tutorial, we show how to find the alignment pose of a rigid object in a scene with clutter and occlusions. # **TWELVE** # **SAMPLE CONSENSUS** • random_sample_consensus Title: How to use Random Sample Consensus model Author: *Gabe O'Leary* Compatibility: > PCL 1.0 In this tutorial we learn how to use a RandomSampleConsensus with a plane model $\,$ to obtain the cloud fitting to this model. ### **THIRTEEN** ### **SEGMENTATION** • planar_segmentation Title: Plane model segmentation Author: *Radu B. Rusu* Compatibility: > PCL 1.3 In this tutorial, we will learn how to segment arbitrary plane models from a given point cloud dataset. • cylinder_segmentation Title: Cylinder model segmentation Author: *Radu B. Rusu* Compatibility: > PCL 1.3 In this tutorial, we will learn how to segment arbitrary cylindrical models from a given point cloud dataset. • cluster_extraction Title: Euclidean Cluster Extraction Author: *Serkan Tuerker* Compatibility: > PCL 1.3 In this tutorial we will learn how to extract Euclidean clusters with the pcl::EuclideanClusterExtraction class. • region_growing_segmentation Title: Region Growing Segmentation Author: *Sergey Ushakov* Compatibility: >= PCL 1.7 In this tutorial we will learn how to use region growing segmentation algo- rithm. • region_growing_rgb_segmentation **Title: Color-based Region Growing Segmentation** Author: *Sergey Ushakov* Compatibility: >= PCL 1.7 In this tutorial we will learn how to use color-based region growing segmentation algorithm. • min_cut_segmentation Title: Min-Cut Based Segmentation Author: *Sergey Ushakov* Compatibility: >= PCL 1.7 In this tutorial we will learn how to use min-cut based segmentation algorithm. • conditional_euclidean_clustering Title: Conditional Euclidean Clustering Author: *Frits Florentinus* Compatibility: >= PCL 1.7 This tutorial describes how to use the Conditional Euclidean Clustering class in PCL: A segmentation algorithm that clusters points based on Euclidean distance and a user-customizable condition that needs to hold. • don_segmentation Title: Difference of Normals Based Segmentation Author: *Yani Ioannou* Compatibility: >= PCL 1.7 In this tutorial we will learn how to use the difference of normals feature for seg- mentation. #### • supervoxel_clustering Title: Supervoxel Clustering Author: *Jeremie Papon* Compatibility: >= PCL 1.8 In this tutorial, we show to break a pointcloud into the mid-level supervoxel rep- resentation. • progressive_morphological_filtering Title: Progressive Morphological Filtering Author: *Brad Chambers*Compatibility: >= PCL 1.8 In this tutorial, we show how to segment a point cloud into ground and non-ground re- turns. • model_outlier_removal Title: Model outlier removal Author: *Timo Häckel* Compatibility: >= PCL 1.7.2 This tutorial describes how to extract points from a point cloud using SAC models ### **FOURTEEN** ### **SURFACE** • moving_least_squares Title: Smoothing and normal estimation based on polynomial reconstruction Author: Zoltan-Csaba Marton, Alexandru E. Ichim Compatibility: > PCL 1.6 In this tutorial, we will learn how to construct and run a Moving Least Squares (MLS) algorithm to obtain smoothed XYZ coordinates and normals. • hull 2d Title: Construct a concave or convex hull polygon for a plane model Author: Gabe O'Leary, Radu B. Rusu Compatibility: > PCL 1.0 In this tutorial we will learn how to calculate a simple 2D concave or convex hull polygon for a set of points supported by a plane. • greedy_triangulation Title: Fast triangulation of unordered point clouds Author: *Zoltan-Csaba Marton* Compatibility: > PCL 1.0 In this tutorial we will learn how to run a greedy triangulation algorithm on a Point-Cloud with normals to obtain a triangle mesh based on projections of the local neighborhood. · • bspline fitting Title: Fitting trimmed B-splines to unordered point clouds Author: *Thomas Mörwald* Compatibility: > PCL 1.7 In this tutorial we will learn how to reconstruct a smooth surface from an unordered point-cloud by fitting trimmed B-splines. # **FIFTEEN** ### **VISUALIZATION** • cloud_viewer Title: Visualizing Point Clouds Author: *Ethan Rublee* Compatibility: > PCL 1.0 This tutorial demonstrates how to use the pcl visualization tools. • range_image_visualization Title: Visualizing Range Images Author: *Bastian Steder* Compatibility: > PCL 1.3 This tutorial demonstrates how to use the pcl visualization tools for range images. • pcl_visualizer Title: **PCLVisualizer**Author: *Geoffrey Biggs*Compatibility: > PCL 1.3 This tutorial demonstrates how to use the PCLVisualizer class for powerful visu- alisation of point clouds and related data. • pcl_plotter Title: PCLPlotter Author: *Kripasindhu Sarkar* Compatibility: > PCL 1.7 This tutorial demonstrates how to use the PCLPlotter class for powerful visualisation of plots, charts and histograms of raw data and explicit functions. #### visualization Title: PCL Visualization overview Author: *Radu B. Rusu* Compatibility: >= PCL 1.0 This tutorial will give an overview on the usage of the PCL visualization tools. #### • qt_visualizer Title: Create a PCL visualizer in Qt with cmake Author: *Victor Lamoine* Compatibility: > PCL 1.5 This tutorial shows you how to create a PCL visualizer within a Qt application. #### • qt_colorize_cloud Title: Create a PCL visualizer in Qt to colorize clouds Author: *Victor Lamoine* Compatibility: > PCL 1.5 This tutorial shows you how to color point clouds within a Qt application. ### SIXTEEN ### **APPLICATIONS** • template_alignment Title: Aligning object templates to a point cloud Author: *Michael Dixon* Compatibility: > PCL 1.3 This tutorial gives an example of how some of the tools covered in the previous tutorials can be combined to solve a higher level problem — aligning a previously captured model of an object to some newly captured data. • vfh_recognition Title: Cluster Recognition and 6DOF Pose Estimation using VFH descriptors Author: *Radu B. Rusu* Compatibility: > PCL 0.8 In this tutorial we show how the Viewpoint Feature Histogram (VFH) descriptor can be used to recognize similar clusters in terms of their geometry. • mobile_streaming Title: Point Cloud Streaming to Mobile Devices with Real-time Visualization Author: *Pat Marion*Compatibility: > PCL 1.3 This tutorial describes how to send point cloud data over the network from a desktop server to a client running on a mobile device. • ground_based_rgbd_people_detection Title: Detecting people on a ground plane with RGB-D data Author: *Matteo Munaro* Compatibility: >= PCL 1.7 This tutorial presents a method for detecting people on a ground plane with RGB-D data # **SEVENTEEN** ### **GPU** • gpu_install Title: **GPU Installation** Author: Koen Buys Compatibility: PCL git master This tutorial explains how to configure PCL to use with a Nvidia GPU • using_kinfu_large_scale Title: Using Kinfu Large Scale to generate a textured mesh Author: Francisco Heredia and Raphael Favier Compatibility: PCL git master This tutorial demonstrates how to use KinFu Large Scale to produce a mesh from a room, and apply texture information in post-processing for a more appealing visual result. • gpu_people Title: People Detection Author: Koen Buys Compatibility: PCL git master This tutorial presents a method for people and pose detection.